Academic Journal

Local limit theorems for complex valued sequences: Old & New

Bibliographic Details
Title: Local limit theorems for complex valued sequences: Old & New
Authors: Coulombel, Jean-François, Faye, Grégory
Contributors: Faye, Grégory, Centre Mersenne, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ANR-24-CE40-3260,HEAD,Évolutions hyperboliques, asymptotiques et dynamique(2024), ANR-11-LABX-0040,CIMI,Centre International de Mathématiques et d'Informatique (de Toulouse)(2011), ANR-21-CE40-0008,Indyana,Dynamiques d'invasion et asymptotiques non triviales(2021)
Source: Journées équations aux dérivées partielles. :1-15
Publisher Information: Cellule MathDoc/Centre Mersenne, 2025.
Publication Year: 2025
Subject Terms: [MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA], [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Description: In probability theory, local limit theorems provide an asymptotic expansion of the convolution powers of a probability distribution supported on ℤ with uniform bounds on the remainders. In this review, we present some recent results for the iterated convolution of complex valued integrable sequences in one space dimension. In the so-called parabolic case, we give a complete expansion, at any accuracy order, for these convolution powers and we provide sharp, pointwise, generalized Gaussian bounds for the remainders. We also present an extension of our main result to the semi-discrete setting (time-continuous convolution problems), and discuss several natural perspectives.
Document Type: Article
Conference object
Report
File Description: application/pdf
Language: English
ISSN: 2118-9366
DOI: 10.5802/jedp.686
Access URL: https://hal.science/hal-04802742v1
https://doi.org/10.5802/jedp.686
https://hal.science/hal-04802742v1/document
Accession Number: edsair.doi.dedup.....e4ee3c5c94e0a44d433ea92aa89415cc
Database: OpenAIRE
Description
ISSN:21189366
DOI:10.5802/jedp.686