Academic Journal

Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0

Bibliographic Details
Title: Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Authors: A. Criado, J. M. Armengol, H. Petetin, D. Rodriguez-Rey, J. Benavides, M. Guevara, C. Pérez García-Pando, A. Soret, O. Jorba
Contributors: Barcelona Supercomputing Center, Universitat Politècnica de Catalunya. Departament de Mecànica de Fluids, Universitat Politècnica de Catalunya. GReCEF- Grup de Recerca en Ciència i Enginyeria de Fluids
Source: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
eISSN
Geoscientific Model Development, Vol 16, Pp 2193-2213 (2023)
Geoscientific Model Development
Publisher Information: Copernicus GmbH, 2022.
Publication Year: 2022
Subject Terms: QE1-996.5, NO2 monitoring, Air pollution, Geology, Environmental monitoring, Àrees temàtiques de la UPC::Enginyeria agroalimentària::Ciències de la terra i de la vida, Air quality monitoring stations, Seguiment ambiental, 13. Climate action, Simulació per ordinador, Air quality, 11. Sustainability, Aire--Qualitat, Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Contaminació atmosfèrica, Àrees temàtiques de la UPC::Informàtica, Urban air quality models
Description: Comprehensive monitoring of NO2 exceedances is imperative for protecting human health, especially in urban areas with traffic. However, an accurate spatial characterization of the exceedances is challenging due to the typically low density of air quality monitoring stations and the inherent uncertainties in urban air quality models. We study how observational data from different sources and timescales can be combined with a dispersion air quality model to obtain bias-corrected NO2 hourly maps at the street scale. We present a kriging-based data fusion workflow that merges dispersion model output with continuous hourly observations and uses a machine-learning-based land use regression (LUR) model constrained with past short intensive passive dosimeter campaign measurements. While the hourly observations allow the bias adjustment of the temporal variability in the dispersion model, the microscale LUR model adds information on the NO2 spatial patterns. Our method includes an uncertainty calculation based on the estimated error variance of the universal kriging technique, which is subsequently used to produce urban maps of probability of exceeding the 200 µg m−3 hourly and the 40 µg m−3 annual NO2 average limits. We assess the statistical performance of this approach in the city of Barcelona for the year 2019. Our results show that simply merging the monitoring stations with the model output already significantly increases the correlation coefficient (r) by +29 % and decreases the root mean square error (RMSE) by −32 %. When adding the time-invariant microscale LUR model in the data fusion workflow, the improvement is even more remarkable, with +46 % and −48 % for the r and RMSE, respectively. Our work highlights the usefulness of high-resolution spatial information in data fusion methods to better estimate exceedances at the street scale.
Document Type: Article
Other literature type
File Description: application/pdf
Language: English
ISSN: 1991-9603
DOI: 10.5194/gmd-16-2193-2023
DOI: 10.5194/egusphere-2022-1147
Access URL: https://egusphere.copernicus.org/preprints/2022/egusphere-2022-1147/
https://gmd.copernicus.org/articles/16/2193/2023/
https://doaj.org/article/0d88300209544ed495cd4736d62be854
Rights: CC BY
CC BY NC ND
Accession Number: edsair.doi.dedup.....d6cc36f901bcc228eb6abb516caf0581
Database: OpenAIRE
Description
ISSN:19919603
DOI:10.5194/gmd-16-2193-2023