Academic Journal

Approximation in the Zygmund and Hölder classes on

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Approximation in the Zygmund and Hölder classes on
Συγγραφείς: Eero Saksman, Odí Soler i Gibert
Συνεισφορές: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. TF-EDP - Grup de Teoria de Funcions i Equacions en Derivades Parcials
Πηγή: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Στοιχεία εκδότη: Canadian Mathematical Society, 2021.
Έτος έκδοσης: 2021
Θεματικοί όροι: Funcions de diverses variables reals, BMO-Sobolev spaces, Zygmund class, Classificació AMS::26 Real functions::26B Functions of several variables, 4. Education, Functions of real variables, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica::Funcions de variable complexa, Wavelet characterizations, 0101 mathematics, 01 natural sciences, Hölder classes, 12. Responsible consumption
Περιγραφή: We determine the distance (up to a multiplicative constant) in the Zygmund class $\Lambda _{\ast }(\mathbb {R}^n)$ to the subspace $\mathrm {J}_{}(\mathbf {bmo})(\mathbb {R}^n).$ The latter space is the image under the Bessel potential $J := (1-\Delta )^{{-1}/2}$ of the space $\mathbf {bmo}(\mathbb {R}^n)$ , which is a nonhomogeneous version of the classical $\mathrm {BMO}$ . Locally, $\mathrm {J}_{}(\mathbf {bmo})(\mathbb {R}^n)$ consists of functions that together with their first derivatives are in $\mathbf {bmo}(\mathbb {R}^n)$ . More generally, we consider the same question when the Zygmund class is replaced by the Hölder space $\Lambda _{s}(\mathbb {R}^n),$ with $0 < s \leq 1$ , and the corresponding subspace is $\mathrm {J}_{s}(\mathbf {bmo})(\mathbb {R}^n)$ , the image under $(1-\Delta )^{{-s}/2}$ of $\mathbf {bmo}(\mathbb {R}^n).$ One should note here that $\Lambda _{1}(\mathbb {R}^n) = \Lambda _{\ast }(\mathbb {R}^n).$ Such results were known earlier only for $n = s = 1$ with a proof that does not extend to the general case.Our results are expressed in terms of second differences. As a by-product of our wavelet-based proof, we also obtain the distance from $f \in \Lambda _{s}(\mathbb {R}^n)$ to $\mathrm {J}_{s}(\mathbf {bmo})(\mathbb {R}^n)$ in terms of the wavelet coefficients of $f.$ We additionally establish a third way to express this distance in terms of the size of the hyperbolic gradient of the harmonic extension of f on the upper half-space $\mathbb {R}^{n +1}_+$ .
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
ISSN: 1496-4279
0008-414X
DOI: 10.4153/s0008414x21000523
Σύνδεσμος πρόσβασης: http://arxiv.org/pdf/2009.09752
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0008414X21000523
Rights: Cambridge Core User Agreement
Αριθμός Καταχώρησης: edsair.doi.dedup.....d444ee3bfad9bcc8fd10c17b82ffc1c0
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:14964279
0008414X
DOI:10.4153/s0008414x21000523