Generalized stability of the Cauchy functional equation

Bibliographic Details
Title: Generalized stability of the Cauchy functional equation
Authors: Páles, Zsolt
Source: aequationes mathematicae. 56:222-232
Publisher Information: Springer Science and Business Media LLC, 1998.
Publication Year: 1998
Subject Terms: Természettudományok, Systems of functional equations and inequalities, Cauchy functional equation, Abelian semigroup, Functional equations for functions with more general domains and/or ranges, Hyers-Ulam stability, Matematika- és számítástudományok, 0101 mathematics, quasi-additive functions, 01 natural sciences, separation theorem
Description: The author introduces a new stability concept which generalizes the notion of the Hyers-Ulam stability. A function \(C:\mathbb R \times \mathbb R \to [-\infty,+\infty]\) is called a comparison function and given \(\alpha \leq \beta\) assume that a function \(f:S \to \mathbb R\) (\((S,+)\) is an abelian semigroup) satisfies the following relation: \[ \alpha \leq C(f(x+y)-f(x),f(y))\leq \beta \qquad x,y \in S. \] Does there exist an additive function \(A:S \to \mathbb R\) such that \[ \alpha \leq C(A(x),f(x))\leq \beta \qquad x\in S? \] The following theorem holds. \textbf{Theorem:} Let \(C\) satisfies the following assumptions: (i) \(C(u,u)=\gamma \in \mathbb R\) for all \(u \in \mathbb R\); (ii) For each fixed \(v \in \mathbb R\), the function \(u \mapsto C(u,v)\) is either nondecreasing and \(\lim_{u\to \infty} C(u,v)=\infty\) or it is nonincreasing and \(\lim_{u\to \infty} C(u,v)=-\infty\); (iii) For all \(-\infty
Document Type: Article
File Description: application/xml; application/pdf
Language: English
ISSN: 1420-8903
0001-9054
DOI: 10.1007/s000100050058
Access URL: https://link.springer.com/article/10.1007/s000100050058
Rights: Springer TDM
Accession Number: edsair.doi.dedup.....d3624bcdcb1d9c6e77d0e33c4fe4aea7
Database: OpenAIRE
Description
ISSN:14208903
00019054
DOI:10.1007/s000100050058