Academic Journal

Strict abnormal extremals in nonholonomic and kinematic control systems

Bibliographic Details
Title: Strict abnormal extremals in nonholonomic and kinematic control systems
Authors: Barbero Liñán, María, Muñoz Lecanda, Miguel Carlos
Contributors: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
Source: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Publication Status: Preprint
Publisher Information: American Institute of Mathematical Sciences (AIMS), 2010.
Publication Year: 2010
Subject Terms: Differential equations, and methods, 0209 industrial biotechnology, 49K15, 49J15, Lagrange, Funcions de, 02 engineering and technology, Mechanics, 34A26, Pontryagin's Maximum Principle, Optimization (Mathematics), Classificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics, 34 Ordinary differential equations::34A General theory [Classificació AMS], 70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics [Classificació AMS], FOS: Mathematics, Hamilton, Hamiltonian dynamical systems, nonholonomic control mechanical systems, kinematic control systems, Equacions diferencials ordinàries, extremals, Optimització, Mathematics - Optimization and Control, 49K Necessary conditions and sufficient conditions for optimality [optimization], 70 Mechanics of particles and systems::70G General models, approaches, and methods [Classificació AMS], approaches, 70H05, abnormality, Lagrange, Classificació AMS::49 Calculus of variations and optimal control, optimization::49K Necessary conditions and sufficient conditions for optimality, 70G45, Classificació AMS::70 Mechanics of particles and systems::70G General models, Sistemes dinàmics diferenciables, Classificació AMS::70 Mechanics of particles and systems::70G General models, approaches, and methods, 49J Existence theories [optimization], Funcions de, Sistemes de, 49 Calculus of variations and optimal control [Classificació AMS], Hamilton, Sistemes de, Optimization and Control (math.OC), Lagrangian functions, optimization::49J Existence theories, Classificació AMS::34 Ordinary differential equations::34A General theory
Description: In optimal control problems, there exist different kinds of extremals, that is, curves candidates to be solution: abnormal, normal and strictly abnormal. The key point for this classification is how those extremals depend on the cost function. We focus on control systems such as nonholonomic control mechanical systems and the associated kinematic systems as long as they are equivalent. With all this in mind, first we study conditions to relate an optimal control problem for the mechanical system with another one for the associated kinematic system. Then, Pontryagin's Maximum Principle will be used to connect the abnormal extremals of both optimal control problems. An example is given to glimpse what the abnormal solutions for kinematic systems become when they are considered as extremals to the optimal control problem for the corresponding nonholonomic mechanical systems.
19 pages
Document Type: Article
File Description: application/pdf
Language: English
ISSN: 1937-1179
DOI: 10.3934/dcdss.2010.3.1
DOI: 10.48550/arxiv.0806.2814
Access URL: http://arxiv.org/abs/0806.2814
http://hdl.handle.net/2117/2100
https://hdl.handle.net/2117/2100
https://www.aimsciences.org/article/doi/10.3934/dcdss.2010.3.1
https://ui.adsabs.harvard.edu/abs/2008arXiv0806.2814B/abstract
https://upcommons.upc.edu/handle/2117/2100
https://upcommons.upc.edu/bitstream/handle/2117/2100/TexasNonholonomic.pdf;sequence=1
https://upcommons.upc.edu/bitstream/2117/2100/1/TexasNonholonomic.pdf
http://ui.adsabs.harvard.edu/abs/2008arXiv0806.2814B/abstract
Rights: CC BY
arXiv Non-Exclusive Distribution
CC BY NC ND
Accession Number: edsair.doi.dedup.....ce865d986d7d73b12bccbca2c38bf096
Database: OpenAIRE
Description
ISSN:19371179
DOI:10.3934/dcdss.2010.3.1