Academic Journal

Global solvability in a three-dimensional self-consistent chemotaxis-Navier–Stokes system with porous medium diffusion: Global solvability in a three-dimensional self-consistent chemotaxis-Navier-Stokes system with porous medium diffusion

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Global solvability in a three-dimensional self-consistent chemotaxis-Navier–Stokes system with porous medium diffusion: Global solvability in a three-dimensional self-consistent chemotaxis-Navier-Stokes system with porous medium diffusion
Συγγραφείς: Chao Liu, Bin Liu
Πηγή: Mathematical Models and Methods in Applied Sciences. 34:1825-1860
Στοιχεία εκδότη: World Scientific Pub Co Pte Ltd, 2024.
Έτος έκδοσης: 2024
Θεματικοί όροι: self-consistent, Quasilinear parabolic equations, chemotaxis-Navier-Stokes system, porous medium diffusion, Cell movement (chemotaxis, etc.), weak solution, Initial-boundary value problems for second-order parabolic systems, 0101 mathematics, Weak solutions to PDEs, PDEs in connection with fluid mechanics, 01 natural sciences
Περιγραφή: This paper mainly deals with a self-consistent chemotaxis-Navier–Stokes system with porous medium diffusion in a three-dimensional (3D) bounded and smooth domain. The novelty here is that both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered, which leads to stronger coupling than the usual chemotaxis-fluid model studied in most existing literatures. It is proved that for any suitably regular initial data, the associated no-flux/no-flux/Dirichlet problem possesses at least one global weak solution or global very weak solution. To the best of our knowledge, this is the first result on the global solvability of the 3D self-consistent chemotaxis-Navier–Stokes system with porous medium diffusion. Our results inter alia provide a more in-depth understanding on the chemotaxis-Navier–Stokes system, and significantly improve previously known ones.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
Γλώσσα: English
ISSN: 1793-6314
0218-2025
DOI: 10.1142/s0218202524500374
Σύνδεσμος πρόσβασης: https://zbmath.org/7938956
https://doi.org/10.1142/s0218202524500374
Αριθμός Καταχώρησης: edsair.doi.dedup.....bac23a5beedbbd6fb622713fae6c0424
Βάση Δεδομένων: OpenAIRE
FullText Text:
  Availability: 0
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.doi.dedup.....bac23a5beedbbd6fb622713fae6c0424
RelevancyScore: 984
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 984.169006347656
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Global solvability in a three-dimensional self-consistent chemotaxis-Navier–Stokes system with porous medium diffusion: Global solvability in a three-dimensional self-consistent chemotaxis-Navier-Stokes system with porous medium diffusion
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Chao+Liu%22">Chao Liu</searchLink><br /><searchLink fieldCode="AR" term="%22Bin+Liu%22">Bin Liu</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Mathematical Models and Methods in Applied Sciences</i>. 34:1825-1860
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: World Scientific Pub Co Pte Ltd, 2024.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22self-consistent%22">self-consistent</searchLink><br /><searchLink fieldCode="DE" term="%22Quasilinear+parabolic+equations%22">Quasilinear parabolic equations</searchLink><br /><searchLink fieldCode="DE" term="%22chemotaxis-Navier-Stokes+system%22">chemotaxis-Navier-Stokes system</searchLink><br /><searchLink fieldCode="DE" term="%22porous+medium+diffusion%22">porous medium diffusion</searchLink><br /><searchLink fieldCode="DE" term="%22Cell+movement+%28chemotaxis%2C+etc%2E%29%22">Cell movement (chemotaxis, etc.)</searchLink><br /><searchLink fieldCode="DE" term="%22weak+solution%22">weak solution</searchLink><br /><searchLink fieldCode="DE" term="%22Initial-boundary+value+problems+for+second-order+parabolic+systems%22">Initial-boundary value problems for second-order parabolic systems</searchLink><br /><searchLink fieldCode="DE" term="%220101+mathematics%22">0101 mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Weak+solutions+to+PDEs%22">Weak solutions to PDEs</searchLink><br /><searchLink fieldCode="DE" term="%22PDEs+in+connection+with+fluid+mechanics%22">PDEs in connection with fluid mechanics</searchLink><br /><searchLink fieldCode="DE" term="%2201+natural+sciences%22">01 natural sciences</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This paper mainly deals with a self-consistent chemotaxis-Navier–Stokes system with porous medium diffusion in a three-dimensional (3D) bounded and smooth domain. The novelty here is that both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered, which leads to stronger coupling than the usual chemotaxis-fluid model studied in most existing literatures. It is proved that for any suitably regular initial data, the associated no-flux/no-flux/Dirichlet problem possesses at least one global weak solution or global very weak solution. To the best of our knowledge, this is the first result on the global solvability of the 3D self-consistent chemotaxis-Navier–Stokes system with porous medium diffusion. Our results inter alia provide a more in-depth understanding on the chemotaxis-Navier–Stokes system, and significantly improve previously known ones.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/xml
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 1793-6314<br />0218-2025
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1142/s0218202524500374
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://zbmath.org/7938956" linkWindow="_blank">https://zbmath.org/7938956</link><br /><link linkTarget="URL" linkTerm="https://doi.org/10.1142/s0218202524500374" linkWindow="_blank">https://doi.org/10.1142/s0218202524500374</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.doi.dedup.....bac23a5beedbbd6fb622713fae6c0424
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....bac23a5beedbbd6fb622713fae6c0424
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1142/s0218202524500374
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 36
        StartPage: 1825
    Subjects:
      – SubjectFull: self-consistent
        Type: general
      – SubjectFull: Quasilinear parabolic equations
        Type: general
      – SubjectFull: chemotaxis-Navier-Stokes system
        Type: general
      – SubjectFull: porous medium diffusion
        Type: general
      – SubjectFull: Cell movement (chemotaxis, etc.)
        Type: general
      – SubjectFull: weak solution
        Type: general
      – SubjectFull: Initial-boundary value problems for second-order parabolic systems
        Type: general
      – SubjectFull: 0101 mathematics
        Type: general
      – SubjectFull: Weak solutions to PDEs
        Type: general
      – SubjectFull: PDEs in connection with fluid mechanics
        Type: general
      – SubjectFull: 01 natural sciences
        Type: general
    Titles:
      – TitleFull: Global solvability in a three-dimensional self-consistent chemotaxis-Navier–Stokes system with porous medium diffusion: Global solvability in a three-dimensional self-consistent chemotaxis-Navier-Stokes system with porous medium diffusion
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Chao Liu
      – PersonEntity:
          Name:
            NameFull: Bin Liu
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 19
              M: 07
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 17936314
            – Type: issn-print
              Value: 02182025
            – Type: issn-locals
              Value: edsair
          Numbering:
            – Type: volume
              Value: 34
          Titles:
            – TitleFull: Mathematical Models and Methods in Applied Sciences
              Type: main
ResultId 1