Academic Journal
Method of Creation of 'Core-Gisseismic Attributes' Dependences With Use of Trainable Neural Networks
| Τίτλος: | Method of Creation of 'Core-Gisseismic Attributes' Dependences With Use of Trainable Neural Networks |
|---|---|
| Συγγραφείς: | Gafurov, Denis, Gafurov, Oleg |
| Πηγή: | MATEC Web of Conferences, Vol 79, p 01055 (2016) MATEC Web of conferences. 2016. Vol. 79. P. 01055 (1-10) |
| Στοιχεία εκδότη: | EDP Sciences, 2016. |
| Έτος έκδοσης: | 2016 |
| Θεματικοί όροι: | геофизический каротаж, Талаканское нефтегазоконденсатное месторождение, TA1-2040, Engineering (General). Civil engineering (General), литолого-фациальные модели |
| Περιγραφή: | The study describes methodological techniques and results of geophysical well logging and seismic data interpretation by means of trainable neural networks. Objects of research are wells and seismic materials of Talakan field. The article also presents forecast of construction and reservoir properties of Osa horizon. The paper gives an example of creation of geological (lithological -facial) model of the field based on developed methodical techniques of complex interpretation of geologicgeophysical data by trainable neural network. The constructed lithological -facial model allows specifying a geological structure of the field. The developed methodical techniques and the trained neural networks may be applied to adjacent sites for research of carbonate horizons. |
| Τύπος εγγράφου: | Article Other literature type |
| Περιγραφή αρχείου: | application/pdf |
| ISSN: | 2261-236X |
| DOI: | 10.1051/matecconf/20167901055 |
| Σύνδεσμος πρόσβασης: | https://www.matec-conferences.org/articles/matecconf/pdf/2016/42/matecconf_imet2016_01055.pdf https://doaj.org/article/1064b2113a924e75b0ee74a57d509032 http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000616437 |
| Rights: | CC BY |
| Αριθμός Καταχώρησης: | edsair.doi.dedup.....a494048507da99f12bc43d385c44dafc |
| Βάση Δεδομένων: | OpenAIRE |
| ISSN: | 2261236X |
|---|---|
| DOI: | 10.1051/matecconf/20167901055 |