Swarm learning with weak supervision enables automatic breast cancer detection in magnetic resonance imaging

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Swarm learning with weak supervision enables automatic breast cancer detection in magnetic resonance imaging
Συγγραφείς: Oliver Lester Saldanha, Jiefu Zhu, Gustav Müller-Franzes, Zunamys I. Carrero, Nicholas R. Payne, Lorena Escudero Sánchez, Paul Christophe Varoutas, Sreenath Kyathanahally, Narmin Ghaffari Laleh, Kevin Pfeiffer, Marta Ligero, Jakob Behner, Kamarul A. Abdullah, Georgios Apostolakos, Chrysafoula Kolofousi, Antri Kleanthous, Michail Kalogeropoulos, Cristina Rossi, Sylwia Nowakowska, Alexandra Athanasiou, Raquel Perez-Lopez, Ritse Mann, Wouter Veldhuis, Julia Camps, Volkmar Schulz, Markus Wenzel, Sergey Morozov, Alexander Ciritsis, Christiane Kuhl, Fiona J. Gilbert, Daniel Truhn, Jakob Nikolas Kather
Συνεισφορές: Institut Català de la Salut, [Saldanha OL] Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany. Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany. [Zhu J] Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany. [Müller-Franzes G, Carrero ZI] Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany. [Payn NR] Department of Radiology, Clinical School, Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK. [Escudero Sánchez L] Department of Radiology, Clinical School, Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK. Cancer Research UK Cambridge Centre, Cambridge, UK. [Perez-Lopez R] Radiomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain, Vall d'Hebron Barcelona Hospital Campus, MS Radiologie, Cancer, Circulatory Health, Apollo - University of Cambridge Repository
Πηγή: Commun Med (Lond)
Scientia
Scientia. Dipòsit d'Informació Digital del Departament de Salut
instname
Communications Medicine, Vol 5, Iss 1, Pp 1-12 (2025)
Communications Medicine, 5, 1
Στοιχεία εκδότη: Springer Science and Business Media LLC, 2025.
Έτος έκδοσης: 2025
Θεματικοί όροι: Epidemiology, Medicine (miscellaneous), TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTICOS Y TERAPÉUTICOS::diagnóstico::técnicas y procedimientos diagnósticos::diagnóstico por imagen::tomografía::imagen por resonancia magnética, 32 Biomedical and Clinical Sciences, Bioengineering, Assessment and Diagnosis, Article, 46 Information and Computing Sciences, Breast Cancer, Medical Imaging - Radboud University Medical Center, FENÓMENOS Y PROCESOS::conceptos matemáticos::algoritmos::inteligencia artificial::aprendizaje automático::aprendizaje profundo, Machine Learning and Artificial Intelligence, Internal Medicine, Cancer, PHENOMENA AND PROCESSES::Mathematical Concepts::Algorithms::Artificial Intelligence::Machine Learning::Deep Learning, Intel·ligència artificial - Aplicacions a la medicina, Data Science, Public Health, Environmental and Occupational Health, Otros calificadores::Otros calificadores::Otros calificadores::/diagnóstico por imagen, Other subheadings::Other subheadings::Other subheadings::/diagnostic imaging, 3211 Oncology and Carcinogenesis, Mama - Càncer - Imatgeria per ressonància magnètica, Networking and Information Technology R&D (NITRD), Biomedical Imaging, Women's Health, Medicine, ANALYTICAL, DIAGNOSTIC AND THERAPEUTIC TECHNIQUES, AND EQUIPMENT::Diagnosis::Diagnostic Techniques and Procedures::Diagnostic Imaging::Tomography::Magnetic Resonance Imaging, ENFERMEDADES::neoplasias::neoplasias por localización::neoplasias de la mama, DISEASES::Neoplasms::Neoplasms by Site::Breast Neoplasms, Aprenentatge profund
Περιγραφή: Background Over the next 5 years, new breast cancer screening guidelines recommending magnetic resonance imaging (MRI) for certain patients will significantly increase the volume of imaging data to be analyzed. While this increase poses challenges for radiologists, artificial intelligence (AI) offers potential solutions to manage this workload. However, the development of AI models is often hindered by manual annotation requirements and strict data-sharing regulations between institutions. Methods In this study, we present an integrated pipeline combining weakly supervised learning—reducing the need for detailed annotations—with local AI model training via swarm learning (SL), which circumvents centralized data sharing. We utilized three datasets comprising 1372 female bilateral breast MRI exams from institutions in three countries: the United States (US), Switzerland, and the United Kingdom (UK) to train models. These models were then validated on two external datasets consisting of 649 bilateral breast MRI exams from Germany and Greece. Results Upon systematically benchmarking various weakly supervised two-dimensional (2D) and three-dimensional (3D) deep learning (DL) methods, we find that the 3D-ResNet-101 demonstrates superior performance. By implementing a real-world SL setup across three international centers, we observe that these collaboratively trained models outperform those trained locally. Even with a smaller dataset, we demonstrate the practical feasibility of deploying SL internationally with on-site data processing, addressing challenges such as data privacy and annotation variability. Conclusions Combining weakly supervised learning with SL enhances inter-institutional collaboration, improving the utility of distributed datasets for medical AI training without requiring detailed annotations or centralized data sharing.
Τύπος εγγράφου: Article
Other literature type
Περιγραφή αρχείου: application/pdf; application/zip; text/xml
Γλώσσα: English
ISSN: 2730-664X
DOI: 10.1038/s43856-024-00722-5
Σύνδεσμος πρόσβασης: https://pubmed.ncbi.nlm.nih.gov/39915630
http://hdl.handle.net/11351/12859
https://doaj.org/article/a1bcf5ae3c6b4dc7a9c39931cc3a78b4
https://hdl.handle.net/https://repository.ubn.ru.nl/handle/2066/317474
https://dspace.library.uu.nl/handle/1874/460712
https://repository.ubn.ru.nl//bitstream/handle/2066/317474/317474.pdf
https://hdl.handle.net/2066/317474
Rights: CC BY
Αριθμός Καταχώρησης: edsair.doi.dedup.....9c3ebdd64aba722f33a52a6e78fb49fd
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:2730664X
DOI:10.1038/s43856-024-00722-5