A Biomedical Decision Support System Using LS-SVM Classifier with an Efficient and New Parameter Regularization Procedure for Diagnosis of Heart Valve Diseases

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: A Biomedical Decision Support System Using LS-SVM Classifier with an Efficient and New Parameter Regularization Procedure for Diagnosis of Heart Valve Diseases
Συγγραφείς: Arslan, A., Çomak, Emre
Συνεισφορές: Selcuk University Institutional Repository
Πηγή: Journal of Medical Systems. 36:549-556
Στοιχεία εκδότη: Springer Science and Business Media LLC, 2010.
Έτος έκδοσης: 2010
Θεματικοί όροι: Support Vector Machine, decision support system, Heart Valve Diseases, 02 engineering and technology, Decision support systems, ultrasound transducer, short time Fourier transformation, regression analysis, Computer-Assisted, 0302 clinical medicine, Fourier transformation, biomedical engineering, Doppler heart sounds, 0202 electrical engineering, electronic engineering, information engineering, organization and management, Decision Support Systems, Clinical/*organization & administration, Echocardiography, Doppler, Heart Valve Diseases/*diagnosis/*diagnostic imaging, Humans, Image Interpretation, Computer-Assisted/*methods, Least-Squares Analysis, Doppler, article, methodology, classification, Echocardiography, Feature extraction, aorta valve disease, heart sound, Clinical, 03 medical and health sciences, Support Vector Machines, Image Interpretation, Computer-Assisted, support vector machine, human, signal processing, Image Interpretation, mitral valve disease, Support vector machines, algorithm, echography, computer assisted diagnosis, least square support vector machine, logistic regression analysis, Decision Support Systems, Clinical, major clinical study, Doppler echocardiography, medical technology, valvular heart disease, Parameter regularization, entropy, artificial neural network
Περιγραφή: Classification success of Support Vector Machine (SVM) depends on the characteristic of given data set and some training parameters (C and σ). In literature, a few studies have been presented for regularization of these parameters which affects classification performance directly. This study proposes a new approach based on Renyi's entropy and Logistic regression methods for parameter regularization. Our regularization procedure runs at two steps. In the first step, optimal value of kernel parameter interval is found via Renyi's entropy method and optimal C value is found via logistic regression using exponential function in the next step. In addition to, this new decision support system is applied to biomedical research area via an application related to Doppler Heart Sounds (DHS). Experimental results show the efficiency of developed regularization procedure.
Τύπος εγγράφου: Article
Γλώσσα: English
ISSN: 1573-689X
0148-5598
DOI: 10.1007/s10916-010-9500-5
Σύνδεσμος πρόσβασης: https://pubmed.ncbi.nlm.nih.gov/20703696
http://dblp.uni-trier.de/db/journals/jms/jms36.html#ComakA12
https://www.ncbi.nlm.nih.gov/pubmed/20703696
https://dl.acm.org/doi/10.1007/s10916-010-9500-5
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/8632
https://link.springer.com/article/10.1007%2Fs10916-010-9500-5
https://dblp.uni-trier.de/db/journals/jms/jms36.html#ComakA12
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/8632
https://hdl.handle.net/20.500.12395/27654
https://doi.org/10.1007/s10916-010-9500-5
Rights: Springer TDM
Αριθμός Καταχώρησης: edsair.doi.dedup.....954431b5c08785be4b3428505fb1c8a0
Βάση Δεδομένων: OpenAIRE