Can We Trust Undervolting in FPGA-Based Deep Learning Designs at Harsh Conditions?

Bibliographic Details
Title: Can We Trust Undervolting in FPGA-Based Deep Learning Designs at Harsh Conditions?
Authors: Fahrettin Koc, Behzad Salami, Oguz Ergin, Osman Unsal, Adrian Cristal Kestelman
Contributors: Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
Source: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Publisher Information: Institute of Electrical and Electronics Engineers (IEEE), 2022.
Publication Year: 2022
Subject Terms: Benchmark testing, Matrius de portes programables per l'usuari, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Field programmable gate arrays, Deep learning, Voltage, Humidity, 02 engineering and technology, Temperature distribution, Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors, 0202 electrical engineering, electronic engineering, information engineering, Temperature sensors, Electronic data processing -- Distributed processing, Aprenentatge profund, Processament distribuït de dades
Description: As more Neural Networks on Field Programmable Gate Arrays (FPGAs) are used in a wider context, the importance of power efficiency increases. However, the focus on power should never compromise application accuracy. One technique to increase power efficiency is reducing the FPGAs' supply voltage ("undervolting"), which can cause accuracy problems. Therefore, careful design-time considerations are required for correct configuration without hindering the target accuracy. This fact becomes especially important for autonomous systems, edge-computing, or data-centers. This study reveals the impact of undervolting in harsh environmental conditions on the accuracy and power efficiency of the convolutional neural network benchmarks. We perform the comprehensive testing in a calibrated infrastructure at controlled temperatures (between -40C and 50C) and four distinct humidity levels (40%, 50%, 70%, 80%) for off-the-shelf FPGAs. We show the voltage guard-band shift with temperature is linear and propose new reliable undervolting designs providing a 65% increase in power efficiency (GOPS/W).
Document Type: Article
Other literature type
File Description: application/pdf
ISSN: 1937-4143
0272-1732
DOI: 10.1109/mm.2022.3153891
DOI: 10.1109/mm.2022.315389110.1109/mm.2022.3153891
Access URL: https://hdl.handle.net/20.500.11851/8602
https://doi.org/10.1109/MM.2022.3153891 10.1109/MM.2022.3153891
https://hdl.handle.net/20.500.11851/8602
https://doi.org/10.1109/MM.2022.3153891
Rights: IEEE Copyright
Accession Number: edsair.doi.dedup.....613f5ce4625f1c2939176bcf57c79df6
Database: OpenAIRE
Description
ISSN:19374143
02721732
DOI:10.1109/mm.2022.3153891