Academic Journal
In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting
| Τίτλος: | In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting |
|---|---|
| Συγγραφείς: | Philippenko, Constantin, Scaman, Kevin, Massoulié, Laurent |
| Συνεισφορές: | Philippenko, Constantin |
| Πηγή: | Proceedings of the AAAI Conference on Artificial Intelligence. 39:19904-19912 |
| Publication Status: | Preprint |
| Στοιχεία εκδότη: | Association for the Advancement of Artificial Intelligence (AAAI), 2025. |
| Έτος έκδοσης: | 2025 |
| Θεματικοί όροι: | Optimization, Matrix factorisation, Machine Learning, FOS: Computer and information sciences, Optimization and Control (math.OC), Optimization and Control, Federated learning, FOS: Mathematics, [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], Machine Learning (cs.LG) |
| Περιγραφή: | This work presents a novel approach to low-rank matrix factorization in a federated learning context, where multiple clients collaboratively solve a matrix decomposition problem without sharing their local data. The algorithm introduces a power initialization technique for the global factorization matrix and combines it with local gradient descent updates to achieve strong theoretical and practical guarantees. Considering this power initialization, we rewrite the previous smooth non-convex problem into a smooth strongly-convex problem that we solve using a parallel Nesterov gradient descent potentially requiring a single step of communication at the initialization step. We provide a linear rate of convergence of the excess loss, our results improve the rates of convergence given in the literature. We provide an upper bound on the Frobenius-norm error of reconstruction under the power initialization strategy. We complete our analysis with experiments on both synthetic and real data. |
| Τύπος εγγράφου: | Article Conference object |
| Περιγραφή αρχείου: | application/pdf |
| ISSN: | 2374-3468 2159-5399 |
| DOI: | 10.1609/aaai.v39i19.34192 |
| DOI: | 10.48550/arxiv.2409.08771 |
| Σύνδεσμος πρόσβασης: | http://arxiv.org/abs/2409.08771 https://hal.science/hal-04893622v2 |
| Rights: | CC BY |
| Αριθμός Καταχώρησης: | edsair.doi.dedup.....43f1eae6b3e8dfb7e16e7bd3ff8606d2 |
| Βάση Δεδομένων: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=doi_dedup___%3A%3A43f1eae6b3e8dfb7e16e7bd3ff8606d2 Name: EDS - OpenAIRE (ns324271) Category: fullText Text: View record at OpenAIRE – Url: https://resolver.ebsco.com/c/fiv2js/result?sid=EBSCO:edsair&genre=article&issn=23743468&ISBN=&volume=39&issue=&date=20250411&spage=19904&pages=19904-19912&title=Proceedings of the AAAI Conference on Artificial Intelligence&atitle=In-depth%20Analysis%20of%20Low-rank%20Matrix%20Factorisation%20in%20a%20Federated%20Setting&aulast=Philippenko%2C%20Constantin&id=DOI:10.1609/aaai.v39i19.34192 Name: Full Text Finder (for New FTF UI) (ns324271) Category: fullText Text: Full Text Finder MouseOverText: Full Text Finder |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.doi.dedup.....43f1eae6b3e8dfb7e16e7bd3ff8606d2 RelevancyScore: 1047 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1047.4873046875 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Philippenko%2C+Constantin%22">Philippenko, Constantin</searchLink><br /><searchLink fieldCode="AR" term="%22Scaman%2C+Kevin%22">Scaman, Kevin</searchLink><br /><searchLink fieldCode="AR" term="%22Massoulié%2C+Laurent%22">Massoulié, Laurent</searchLink> – Name: Author Label: Contributors Group: Au Data: Philippenko, Constantin – Name: TitleSource Label: Source Group: Src Data: <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>. 39:19904-19912 – Name: Publisher Label: Publication Status Group: PubInfo Data: Preprint – Name: Publisher Label: Publisher Information Group: PubInfo Data: Association for the Advancement of Artificial Intelligence (AAAI), 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Optimization%22">Optimization</searchLink><br /><searchLink fieldCode="DE" term="%22Matrix+factorisation%22">Matrix factorisation</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+Learning%22">Machine Learning</searchLink><br /><searchLink fieldCode="DE" term="%22FOS%3A+Computer+and+information+sciences%22">FOS: Computer and information sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Optimization+and+Control+%28math%2EOC%29%22">Optimization and Control (math.OC)</searchLink><br /><searchLink fieldCode="DE" term="%22Optimization+and+Control%22">Optimization and Control</searchLink><br /><searchLink fieldCode="DE" term="%22Federated+learning%22">Federated learning</searchLink><br /><searchLink fieldCode="DE" term="%22FOS%3A+Mathematics%22">FOS: Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO%2EINFO-LG]+Computer+Science+[cs]%2FMachine+Learning+[cs%2ELG]%22">[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]</searchLink><br /><searchLink fieldCode="DE" term="%22[STAT%2EML]+Statistics+[stat]%2FMachine+Learning+[stat%2EML]%22">[STAT.ML] Statistics [stat]/Machine Learning [stat.ML]</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+Learning+%28cs%2ELG%29%22">Machine Learning (cs.LG)</searchLink> – Name: Abstract Label: Description Group: Ab Data: This work presents a novel approach to low-rank matrix factorization in a federated learning context, where multiple clients collaboratively solve a matrix decomposition problem without sharing their local data. The algorithm introduces a power initialization technique for the global factorization matrix and combines it with local gradient descent updates to achieve strong theoretical and practical guarantees. Considering this power initialization, we rewrite the previous smooth non-convex problem into a smooth strongly-convex problem that we solve using a parallel Nesterov gradient descent potentially requiring a single step of communication at the initialization step. We provide a linear rate of convergence of the excess loss, our results improve the rates of convergence given in the literature. We provide an upper bound on the Frobenius-norm error of reconstruction under the power initialization strategy. We complete our analysis with experiments on both synthetic and real data. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article<br />Conference object – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: ISSN Label: ISSN Group: ISSN Data: 2374-3468<br />2159-5399 – Name: DOI Label: DOI Group: ID Data: 10.1609/aaai.v39i19.34192 – Name: DOI Label: DOI Group: ID Data: 10.48550/arxiv.2409.08771 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2409.08771" linkWindow="_blank">http://arxiv.org/abs/2409.08771</link><br /><link linkTarget="URL" linkTerm="https://hal.science/hal-04893622v2" linkWindow="_blank">https://hal.science/hal-04893622v2</link> – Name: Copyright Label: Rights Group: Cpyrght Data: CC BY – Name: AN Label: Accession Number Group: ID Data: edsair.doi.dedup.....43f1eae6b3e8dfb7e16e7bd3ff8606d2 |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....43f1eae6b3e8dfb7e16e7bd3ff8606d2 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1609/aaai.v39i19.34192 Languages: – Text: Undetermined PhysicalDescription: Pagination: PageCount: 9 StartPage: 19904 Subjects: – SubjectFull: Optimization Type: general – SubjectFull: Matrix factorisation Type: general – SubjectFull: Machine Learning Type: general – SubjectFull: FOS: Computer and information sciences Type: general – SubjectFull: Optimization and Control (math.OC) Type: general – SubjectFull: Optimization and Control Type: general – SubjectFull: Federated learning Type: general – SubjectFull: FOS: Mathematics Type: general – SubjectFull: [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG] Type: general – SubjectFull: [STAT.ML] Statistics [stat]/Machine Learning [stat.ML] Type: general – SubjectFull: Machine Learning (cs.LG) Type: general Titles: – TitleFull: In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Philippenko, Constantin – PersonEntity: Name: NameFull: Scaman, Kevin – PersonEntity: Name: NameFull: Massoulié, Laurent – PersonEntity: Name: NameFull: Philippenko, Constantin IsPartOfRelationships: – BibEntity: Dates: – D: 11 M: 04 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 23743468 – Type: issn-print Value: 21595399 – Type: issn-locals Value: edsair – Type: issn-locals Value: edsairFT Numbering: – Type: volume Value: 39 Titles: – TitleFull: Proceedings of the AAAI Conference on Artificial Intelligence Type: main |
| ResultId | 1 |