Academic Journal

In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting
Συγγραφείς: Philippenko, Constantin, Scaman, Kevin, Massoulié, Laurent
Συνεισφορές: Philippenko, Constantin
Πηγή: Proceedings of the AAAI Conference on Artificial Intelligence. 39:19904-19912
Publication Status: Preprint
Στοιχεία εκδότη: Association for the Advancement of Artificial Intelligence (AAAI), 2025.
Έτος έκδοσης: 2025
Θεματικοί όροι: Optimization, Matrix factorisation, Machine Learning, FOS: Computer and information sciences, Optimization and Control (math.OC), Optimization and Control, Federated learning, FOS: Mathematics, [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], Machine Learning (cs.LG)
Περιγραφή: This work presents a novel approach to low-rank matrix factorization in a federated learning context, where multiple clients collaboratively solve a matrix decomposition problem without sharing their local data. The algorithm introduces a power initialization technique for the global factorization matrix and combines it with local gradient descent updates to achieve strong theoretical and practical guarantees. Considering this power initialization, we rewrite the previous smooth non-convex problem into a smooth strongly-convex problem that we solve using a parallel Nesterov gradient descent potentially requiring a single step of communication at the initialization step. We provide a linear rate of convergence of the excess loss, our results improve the rates of convergence given in the literature. We provide an upper bound on the Frobenius-norm error of reconstruction under the power initialization strategy. We complete our analysis with experiments on both synthetic and real data.
Τύπος εγγράφου: Article
Conference object
Περιγραφή αρχείου: application/pdf
ISSN: 2374-3468
2159-5399
DOI: 10.1609/aaai.v39i19.34192
DOI: 10.48550/arxiv.2409.08771
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/2409.08771
https://hal.science/hal-04893622v2
Rights: CC BY
Αριθμός Καταχώρησης: edsair.doi.dedup.....43f1eae6b3e8dfb7e16e7bd3ff8606d2
Βάση Δεδομένων: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://explore.openaire.eu/search/publication?articleId=doi_dedup___%3A%3A43f1eae6b3e8dfb7e16e7bd3ff8606d2
    Name: EDS - OpenAIRE (ns324271)
    Category: fullText
    Text: View record at OpenAIRE
  – Url: https://resolver.ebsco.com/c/fiv2js/result?sid=EBSCO:edsair&genre=article&issn=23743468&ISBN=&volume=39&issue=&date=20250411&spage=19904&pages=19904-19912&title=Proceedings of the AAAI Conference on Artificial Intelligence&atitle=In-depth%20Analysis%20of%20Low-rank%20Matrix%20Factorisation%20in%20a%20Federated%20Setting&aulast=Philippenko%2C%20Constantin&id=DOI:10.1609/aaai.v39i19.34192
    Name: Full Text Finder (for New FTF UI) (ns324271)
    Category: fullText
    Text: Full Text Finder
    MouseOverText: Full Text Finder
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.doi.dedup.....43f1eae6b3e8dfb7e16e7bd3ff8606d2
RelevancyScore: 1047
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1047.4873046875
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Philippenko%2C+Constantin%22">Philippenko, Constantin</searchLink><br /><searchLink fieldCode="AR" term="%22Scaman%2C+Kevin%22">Scaman, Kevin</searchLink><br /><searchLink fieldCode="AR" term="%22Massoulié%2C+Laurent%22">Massoulié, Laurent</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Philippenko, Constantin
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>. 39:19904-19912
– Name: Publisher
  Label: Publication Status
  Group: PubInfo
  Data: Preprint
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Association for the Advancement of Artificial Intelligence (AAAI), 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Optimization%22">Optimization</searchLink><br /><searchLink fieldCode="DE" term="%22Matrix+factorisation%22">Matrix factorisation</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+Learning%22">Machine Learning</searchLink><br /><searchLink fieldCode="DE" term="%22FOS%3A+Computer+and+information+sciences%22">FOS: Computer and information sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Optimization+and+Control+%28math%2EOC%29%22">Optimization and Control (math.OC)</searchLink><br /><searchLink fieldCode="DE" term="%22Optimization+and+Control%22">Optimization and Control</searchLink><br /><searchLink fieldCode="DE" term="%22Federated+learning%22">Federated learning</searchLink><br /><searchLink fieldCode="DE" term="%22FOS%3A+Mathematics%22">FOS: Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO%2EINFO-LG]+Computer+Science+[cs]%2FMachine+Learning+[cs%2ELG]%22">[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]</searchLink><br /><searchLink fieldCode="DE" term="%22[STAT%2EML]+Statistics+[stat]%2FMachine+Learning+[stat%2EML]%22">[STAT.ML] Statistics [stat]/Machine Learning [stat.ML]</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+Learning+%28cs%2ELG%29%22">Machine Learning (cs.LG)</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This work presents a novel approach to low-rank matrix factorization in a federated learning context, where multiple clients collaboratively solve a matrix decomposition problem without sharing their local data. The algorithm introduces a power initialization technique for the global factorization matrix and combines it with local gradient descent updates to achieve strong theoretical and practical guarantees. Considering this power initialization, we rewrite the previous smooth non-convex problem into a smooth strongly-convex problem that we solve using a parallel Nesterov gradient descent potentially requiring a single step of communication at the initialization step. We provide a linear rate of convergence of the excess loss, our results improve the rates of convergence given in the literature. We provide an upper bound on the Frobenius-norm error of reconstruction under the power initialization strategy. We complete our analysis with experiments on both synthetic and real data.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article<br />Conference object
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2374-3468<br />2159-5399
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1609/aaai.v39i19.34192
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.48550/arxiv.2409.08771
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2409.08771" linkWindow="_blank">http://arxiv.org/abs/2409.08771</link><br /><link linkTarget="URL" linkTerm="https://hal.science/hal-04893622v2" linkWindow="_blank">https://hal.science/hal-04893622v2</link>
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: CC BY
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.doi.dedup.....43f1eae6b3e8dfb7e16e7bd3ff8606d2
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....43f1eae6b3e8dfb7e16e7bd3ff8606d2
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1609/aaai.v39i19.34192
    Languages:
      – Text: Undetermined
    PhysicalDescription:
      Pagination:
        PageCount: 9
        StartPage: 19904
    Subjects:
      – SubjectFull: Optimization
        Type: general
      – SubjectFull: Matrix factorisation
        Type: general
      – SubjectFull: Machine Learning
        Type: general
      – SubjectFull: FOS: Computer and information sciences
        Type: general
      – SubjectFull: Optimization and Control (math.OC)
        Type: general
      – SubjectFull: Optimization and Control
        Type: general
      – SubjectFull: Federated learning
        Type: general
      – SubjectFull: FOS: Mathematics
        Type: general
      – SubjectFull: [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]
        Type: general
      – SubjectFull: [STAT.ML] Statistics [stat]/Machine Learning [stat.ML]
        Type: general
      – SubjectFull: Machine Learning (cs.LG)
        Type: general
    Titles:
      – TitleFull: In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Philippenko, Constantin
      – PersonEntity:
          Name:
            NameFull: Scaman, Kevin
      – PersonEntity:
          Name:
            NameFull: Massoulié, Laurent
      – PersonEntity:
          Name:
            NameFull: Philippenko, Constantin
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 11
              M: 04
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 23743468
            – Type: issn-print
              Value: 21595399
            – Type: issn-locals
              Value: edsair
            – Type: issn-locals
              Value: edsairFT
          Numbering:
            – Type: volume
              Value: 39
          Titles:
            – TitleFull: Proceedings of the AAAI Conference on Artificial Intelligence
              Type: main
ResultId 1