Academic Journal
Mutually orthogonal unitary and orthogonal matrices
| Title: | Mutually orthogonal unitary and orthogonal matrices |
|---|---|
| Authors: | Zhiwei Song, Lin Chen, Saiqi Liu |
| Source: | Linear Algebra and its Applications. 725:1-17 |
| Publication Status: | Preprint |
| Publisher Information: | Elsevier BV, 2025. |
| Publication Year: | 2025 |
| Subject Terms: | Quantum Physics, FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics |
| Description: | We introduce the concept of n-OU and n-OO matrix sets, a collection of n mutually-orthogonal unitary and real orthogonal matrices under Hilbert-Schmidt inner product. We give a detailed characterization of order-three n-OO matrix sets under orthogonal equivalence. As an application in quantum information theory, we show that the minimum and maximum numbers of an unextendible maximally entangled bases within a real two-qutrit system are three and four, respectively. Further, we propose a new matrix decomposition approach, defining an n-OU (resp. n-OO) decomposition for a matrix as a linear combination of n matrices from an n-OU (resp. n-OO) matrix set. We show that any order-d matrix has a d-OU decomposition. As a contrast, we provide criteria for an order-three real matrix to possess an n-OO decomposition. 16 pages, no figure |
| Document Type: | Article |
| Language: | English |
| ISSN: | 0024-3795 |
| DOI: | 10.1016/j.laa.2025.06.025 |
| DOI: | 10.48550/arxiv.2309.11128 |
| Access URL: | http://arxiv.org/abs/2309.11128 |
| Rights: | Elsevier TDM arXiv Non-Exclusive Distribution |
| Accession Number: | edsair.doi.dedup.....3ff74d3d02adb51f11eb41b8f559948d |
| Database: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=doi_dedup___%3A%3A3ff74d3d02adb51f11eb41b8f559948d Name: EDS - OpenAIRE (ns324271) Category: fullText Text: View record at OpenAIRE – Url: https://www.doi.org/10.1016/j.laa.2025.06.025? Name: ScienceDirect (all content) (s7799221) Category: fullText Text: View record from ScienceDirect MouseOverText: View record from ScienceDirect – Url: https://resolver.ebsco.com/c/fiv2js/result?sid=EBSCO:edsair&genre=article&issn=00243795&ISBN=&volume=725&issue=&date=20251101&spage=1&pages=1-17&title=Linear Algebra and its Applications&atitle=Mutually%20orthogonal%20unitary%20and%20orthogonal%20matrices&aulast=Zhiwei%20Song&id=DOI:10.1016/j.laa.2025.06.025 Name: Full Text Finder (for New FTF UI) (ns324271) Category: fullText Text: Full Text Finder MouseOverText: Full Text Finder |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.doi.dedup.....3ff74d3d02adb51f11eb41b8f559948d RelevancyScore: 1074 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1073.90222167969 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Mutually orthogonal unitary and orthogonal matrices – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Zhiwei+Song%22">Zhiwei Song</searchLink><br /><searchLink fieldCode="AR" term="%22Lin+Chen%22">Lin Chen</searchLink><br /><searchLink fieldCode="AR" term="%22Saiqi+Liu%22">Saiqi Liu</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>Linear Algebra and its Applications</i>. 725:1-17 – Name: Publisher Label: Publication Status Group: PubInfo Data: Preprint – Name: Publisher Label: Publisher Information Group: PubInfo Data: Elsevier BV, 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Quantum+Physics%22">Quantum Physics</searchLink><br /><searchLink fieldCode="DE" term="%22FOS%3A+Physical+sciences%22">FOS: Physical sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Physics+%28math-ph%29%22">Mathematical Physics (math-ph)</searchLink><br /><searchLink fieldCode="DE" term="%22Quantum+Physics+%28quant-ph%29%22">Quantum Physics (quant-ph)</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Physics%22">Mathematical Physics</searchLink> – Name: Abstract Label: Description Group: Ab Data: We introduce the concept of n-OU and n-OO matrix sets, a collection of n mutually-orthogonal unitary and real orthogonal matrices under Hilbert-Schmidt inner product. We give a detailed characterization of order-three n-OO matrix sets under orthogonal equivalence. As an application in quantum information theory, we show that the minimum and maximum numbers of an unextendible maximally entangled bases within a real two-qutrit system are three and four, respectively. Further, we propose a new matrix decomposition approach, defining an n-OU (resp. n-OO) decomposition for a matrix as a linear combination of n matrices from an n-OU (resp. n-OO) matrix set. We show that any order-d matrix has a d-OU decomposition. As a contrast, we provide criteria for an order-three real matrix to possess an n-OO decomposition.<br />16 pages, no figure – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 0024-3795 – Name: DOI Label: DOI Group: ID Data: 10.1016/j.laa.2025.06.025 – Name: DOI Label: DOI Group: ID Data: 10.48550/arxiv.2309.11128 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2309.11128" linkWindow="_blank">http://arxiv.org/abs/2309.11128</link> – Name: Copyright Label: Rights Group: Cpyrght Data: Elsevier TDM<br />arXiv Non-Exclusive Distribution – Name: AN Label: Accession Number Group: ID Data: edsair.doi.dedup.....3ff74d3d02adb51f11eb41b8f559948d |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....3ff74d3d02adb51f11eb41b8f559948d |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1016/j.laa.2025.06.025 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 17 StartPage: 1 Subjects: – SubjectFull: Quantum Physics Type: general – SubjectFull: FOS: Physical sciences Type: general – SubjectFull: Mathematical Physics (math-ph) Type: general – SubjectFull: Quantum Physics (quant-ph) Type: general – SubjectFull: Mathematical Physics Type: general Titles: – TitleFull: Mutually orthogonal unitary and orthogonal matrices Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Zhiwei Song – PersonEntity: Name: NameFull: Lin Chen – PersonEntity: Name: NameFull: Saiqi Liu IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 11 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 00243795 – Type: issn-locals Value: edsair – Type: issn-locals Value: edsairFT Numbering: – Type: volume Value: 725 Titles: – TitleFull: Linear Algebra and its Applications Type: main |
| ResultId | 1 |