Tauberian operators in p‐adic analysis: Tauberian operators in \(p\)-adic analysis

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Tauberian operators in p‐adic analysis: Tauberian operators in \(p\)-adic analysis
Συγγραφείς: Takemitsu Kiyosawa
Πηγή: International Journal of Mathematics and Mathematical Sciences, Vol 24, Iss 3, Pp 149-162 (2000)
Στοιχεία εκδότη: Wiley, 2000.
Έτος έκδοσης: 2000
Θεματικοί όροι: basic sequence, Tauberian operators, property N, General (adjoints, conjugates, products, inverses, domains, ranges, etc.), Operator theory over fields other than \(\mathbb{R}\), \(\mathbb{C}\) or the quaternions, non-Archimedean operator theory, 01 natural sciences, Non-archimedean Banach spaces, strongly polar spaces, compactoid subspaces, Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions, non-Archimedean functional analysis, QA1-939, \(p\)-adic Tauberian operators, \(p\)-adic semi-Fredholm operators, (Semi-) Fredholm operators, index theories, 0101 mathematics, Mathematics
Περιγραφή: In archimedean analysis Tauberian operators and operators having property N were defined by Kalton and Wilansky (1976). We give several characterizations of p‐adic Tauberian operators and operators having property N in terms of basic sequences. And, as its applications, we give some equivalent relations between these operators and p‐adic semi‐Fredholm operators.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
Γλώσσα: English
ISSN: 1687-0425
0161-1712
DOI: 10.1155/s016117120000291x
Σύνδεσμος πρόσβασης: http://downloads.hindawi.com/journals/ijmms/2000/204179.pdf
https://zbmath.org/1533031
https://doi.org/10.1155/s016117120000291x
https://doaj.org/article/90ecd8ea93664ffd952794bfff846157
https://www.hindawi.com/journals/ijmms/2000/204179/
http://www.emis.de/journals/HOA/IJMMS/Volume24_3/162.pdf
https://downloads.hindawi.com/journals/ijmms/2000/204179.pdf
http://emis.maths.adelaide.edu.au/journals/HOA/IJMMS/Volume24_3/162.pdf
Rights: CC BY
Αριθμός Καταχώρησης: edsair.doi.dedup.....2d3b769a4e3c20bb826d3d9bd6c621e7
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:16870425
01611712
DOI:10.1155/s016117120000291x