Academic Journal

A Hybrid Study for Epileptic Seizure Detection Based on Deep Learning using EEG Data

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: A Hybrid Study for Epileptic Seizure Detection Based on Deep Learning using EEG Data
Συγγραφείς: Abdulkadir Buldu, Kaplan Kaplan, Melih Kuncan
Πηγή: Journal of Universal Computer Science, Vol 30, Iss 7, Pp 909-934 (2024)
JUCS-Journal of Universal Computer Science 30(7): 909-934
Στοιχεία εκδότη: Pensoft Publishers, 2024.
Έτος έκδοσης: 2024
Θεματικοί όροι: STFT, transfer learn, CWT, Electronic computers. Computer science, epilepsy diagnosis, EEG, QA75.5-76.95, 0102 computer and information sciences, transfer learning, 01 natural sciences, 3. Good health
Περιγραφή: Epilepsy, a neurological disease characterized by recurrent seizures, can be diagnosed using Electroencephalogram (EEG) signals. Traditional diagnostic methods often face limitations, leading to delays and potential misdiagnoses. In response, researchers have been developing low-cost assistive systems to enhance diagnostic accuracy and reduce life-threatening risks for epilepsy patients. In this study, a hybrid approach is proposed to diagnose epilepsy disease. To validate the success of the proposed algorithm, Hauz Khas and Bonn data sets were used. AlexNet, GoogleNet, VGG19, ResNet50, and ResNet101 classifiers were employed in this study along with the Continuous Wavelet Transform (CWT) and Short Time Fourier Transform (STFT). To increase the generalization capability, 10-fold cross-validation method was used in the classification process. Firstly, the preictal and ictal moments in the Hauz Khas dataset was classified with 99.5% success rate by CWT method and Resnet101. Similarly, 99.8% accuracy was achieved in the binary classification of the Bonn dataset using the CWT method with Resnet101. Finally, for the classification with the AB-CD-E group, 99.33% classification success rate was achieved by using the CWT method with the Resnet-101 model. These findings underscore the potential of the proposed assistive system to significantly improve the diagnosis and management of epilepsy, demonstrating high accuracy and reliability across different datasets and classification techniques. 
Τύπος εγγράφου: Article
Περιγραφή αρχείου: text/html
ISSN: 0948-6968
0948-695X
DOI: 10.3897/jucs.109933
Σύνδεσμος πρόσβασης: https://doaj.org/article/de600eb129de4d64a2e0c6c629c32c4e
https://avesis.kocaeli.edu.tr/publication/details/f3aaf232-61cc-4e76-9b5c-b840d0fbf761/oai
https://hdl.handle.net/20.500.12604/8342
https://lib.jucs.org/article/109933/download/pdf/
https://lib.jucs.org/article/109933/
https://doi.org/10.3897/jucs.109933
Rights: CC BY ND
Αριθμός Καταχώρησης: edsair.doi.dedup.....29b58c26c75d2367e7a31fd15b511e56
Βάση Δεδομένων: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://explore.openaire.eu/search/publication?articleId=doi_dedup___%3A%3A29b58c26c75d2367e7a31fd15b511e56
    Name: EDS - OpenAIRE (ns324271)
    Category: fullText
    Text: View record at OpenAIRE
  – Url: https://resolver.ebsco.com/c/fiv2js/result?sid=EBSCO:edsair&genre=article&issn=09486968&ISBN=&volume=30&issue=&date=20240728&spage=909&pages=909-934&title=JUCS - Journal of Universal Computer Science&atitle=A%20Hybrid%20Study%20for%20Epileptic%20Seizure%20Detection%20Based%20on%20Deep%20Learning%20using%20EEG%20Data&aulast=Abdulkadir%20Buldu&id=DOI:10.3897/jucs.109933
    Name: Full Text Finder (for New FTF UI) (ns324271)
    Category: fullText
    Text: Full Text Finder
    MouseOverText: Full Text Finder
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.doi.dedup.....29b58c26c75d2367e7a31fd15b511e56
RelevancyScore: 984
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 984.169982910156
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A Hybrid Study for Epileptic Seizure Detection Based on Deep Learning using EEG Data
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Abdulkadir+Buldu%22">Abdulkadir Buldu</searchLink><br /><searchLink fieldCode="AR" term="%22Kaplan+Kaplan%22">Kaplan Kaplan</searchLink><br /><searchLink fieldCode="AR" term="%22Melih+Kuncan%22">Melih Kuncan</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Journal of Universal Computer Science, Vol 30, Iss 7, Pp 909-934 (2024)<br />JUCS-Journal of Universal Computer Science 30(7): 909-934
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Pensoft Publishers, 2024.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22STFT%22">STFT</searchLink><br /><searchLink fieldCode="DE" term="%22transfer+learn%22">transfer learn</searchLink><br /><searchLink fieldCode="DE" term="%22CWT%22">CWT</searchLink><br /><searchLink fieldCode="DE" term="%22Electronic+computers%2E+Computer+science%22">Electronic computers. Computer science</searchLink><br /><searchLink fieldCode="DE" term="%22epilepsy+diagnosis%22">epilepsy diagnosis</searchLink><br /><searchLink fieldCode="DE" term="%22EEG%22">EEG</searchLink><br /><searchLink fieldCode="DE" term="%22QA75%2E5-76%2E95%22">QA75.5-76.95</searchLink><br /><searchLink fieldCode="DE" term="%220102+computer+and+information+sciences%22">0102 computer and information sciences</searchLink><br /><searchLink fieldCode="DE" term="%22transfer+learning%22">transfer learning</searchLink><br /><searchLink fieldCode="DE" term="%2201+natural+sciences%22">01 natural sciences</searchLink><br /><searchLink fieldCode="DE" term="%223%2E+Good+health%22">3. Good health</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Epilepsy, a neurological disease characterized by recurrent seizures, can be diagnosed using Electroencephalogram (EEG) signals. Traditional diagnostic methods often face limitations, leading to delays and potential misdiagnoses. In response, researchers have been developing low-cost assistive systems to enhance diagnostic accuracy and reduce life-threatening risks for epilepsy patients. In this study, a hybrid approach is proposed to diagnose epilepsy disease. To validate the success of the proposed algorithm, Hauz Khas and Bonn data sets were used. AlexNet, GoogleNet, VGG19, ResNet50, and ResNet101 classifiers were employed in this study along with the Continuous Wavelet Transform (CWT) and Short Time Fourier Transform (STFT). To increase the generalization capability, 10-fold cross-validation method was used in the classification process. Firstly, the preictal and ictal moments in the Hauz Khas dataset was classified with 99.5% success rate by CWT method and Resnet101. Similarly, 99.8% accuracy was achieved in the binary classification of the Bonn dataset using the CWT method with Resnet101. Finally, for the classification with the AB-CD-E group, 99.33% classification success rate was achieved by using the CWT method with the Resnet-101 model. These findings underscore the potential of the proposed assistive system to significantly improve the diagnosis and management of epilepsy, demonstrating high accuracy and reliability across different datasets and classification techniques.&nbsp
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: text/html
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 0948-6968<br />0948-695X
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3897/jucs.109933
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/de600eb129de4d64a2e0c6c629c32c4e" linkWindow="_blank">https://doaj.org/article/de600eb129de4d64a2e0c6c629c32c4e</link><br /><link linkTarget="URL" linkTerm="https://avesis.kocaeli.edu.tr/publication/details/f3aaf232-61cc-4e76-9b5c-b840d0fbf761/oai" linkWindow="_blank">https://avesis.kocaeli.edu.tr/publication/details/f3aaf232-61cc-4e76-9b5c-b840d0fbf761/oai</link><br /><link linkTarget="URL" linkTerm="https://hdl.handle.net/20.500.12604/8342" linkWindow="_blank">https://hdl.handle.net/20.500.12604/8342</link><br /><link linkTarget="URL" linkTerm="https://lib.jucs.org/article/109933/download/pdf/" linkWindow="_blank">https://lib.jucs.org/article/109933/download/pdf/</link><br /><link linkTarget="URL" linkTerm="https://lib.jucs.org/article/109933/" linkWindow="_blank">https://lib.jucs.org/article/109933/</link><br /><link linkTarget="URL" linkTerm="https://doi.org/10.3897/jucs.109933" linkWindow="_blank">https://doi.org/10.3897/jucs.109933</link>
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: CC BY ND
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.doi.dedup.....29b58c26c75d2367e7a31fd15b511e56
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....29b58c26c75d2367e7a31fd15b511e56
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3897/jucs.109933
    Languages:
      – Text: Undetermined
    PhysicalDescription:
      Pagination:
        PageCount: 26
        StartPage: 909
    Subjects:
      – SubjectFull: STFT
        Type: general
      – SubjectFull: transfer learn
        Type: general
      – SubjectFull: CWT
        Type: general
      – SubjectFull: Electronic computers. Computer science
        Type: general
      – SubjectFull: epilepsy diagnosis
        Type: general
      – SubjectFull: EEG
        Type: general
      – SubjectFull: QA75.5-76.95
        Type: general
      – SubjectFull: 0102 computer and information sciences
        Type: general
      – SubjectFull: transfer learning
        Type: general
      – SubjectFull: 01 natural sciences
        Type: general
      – SubjectFull: 3. Good health
        Type: general
    Titles:
      – TitleFull: A Hybrid Study for Epileptic Seizure Detection Based on Deep Learning using EEG Data
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Abdulkadir Buldu
      – PersonEntity:
          Name:
            NameFull: Kaplan Kaplan
      – PersonEntity:
          Name:
            NameFull: Melih Kuncan
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 28
              M: 07
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 09486968
            – Type: issn-print
              Value: 0948695X
            – Type: issn-locals
              Value: edsair
            – Type: issn-locals
              Value: edsairFT
          Numbering:
            – Type: volume
              Value: 30
          Titles:
            – TitleFull: JUCS - Journal of Universal Computer Science
              Type: main
ResultId 1