Slow graph bootstrap percolation II: Accelerating properties

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Slow graph bootstrap percolation II: Accelerating properties
Συγγραφείς: David Fabian, Patrick Morris, Tibor Szabó
Συνεισφορές: Universitat Politècnica de Catalunya. Departament de Matemàtiques
Πηγή: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Publication Status: Preprint
Στοιχεία εκδότη: Elsevier BV, 2025.
Έτος έκδοσης: 2025
Θεματικοί όροι: Running times, Graph bootstrap percolation, Extremal graph theory, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
Περιγραφή: For a graph $H$ and an $n$-vertex graph $G$, the $H$-bootstrap process on $G$ is the process which starts with $G$ and, at every time step, adds any missing edges on the vertices of $G$ that complete a copy of $H$. This process eventually stabilises and we are interested in the extremal question raised by Bollobás of determining the maximum running time (number of time steps before stabilising) of this process over all possible choices of $n$-vertex graph $G$. In this paper, we initiate a systematic study of the asymptotics of this parameter, denoted $M_H(n)$, and its dependence on properties of the graph $H$. Our focus is on $H$ which define relatively fast bootstrap processes, that is, with $M_H(n)$ being at most linear in $n$. We study the graph class of trees, showing that one can bound $M_T(n)$ by a quadratic function in $v(T)$ for all trees $T$ and all $n$. We then go on to explore the relationship between the running time of the $H$-process and the minimum vertex degree and connectivity of $H$.
27 pages, 6 figures. Version updated thanks to comments of referees. To appear in JCTB
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/pdf
Γλώσσα: English
ISSN: 0095-8956
DOI: 10.1016/j.jctb.2024.12.006
DOI: 10.48550/arxiv.2311.18786
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/2311.18786
Rights: Elsevier TDM
CC BY
CC BY NC ND
Αριθμός Καταχώρησης: edsair.doi.dedup.....1a97338fe59d05e00dff7b02941fb18a
Βάση Δεδομένων: OpenAIRE
Περιγραφή
ISSN:00958956
DOI:10.1016/j.jctb.2024.12.006