Academic Journal

Multi-Step Concanavalin A Phase Separation and Early-Stage Nucleation Monitored Via Dynamic and Depolarized Light Scattering

Bibliographic Details
Title: Multi-Step Concanavalin A Phase Separation and Early-Stage Nucleation Monitored Via Dynamic and Depolarized Light Scattering
Authors: Hévila Brognaro, Sven Falke, Celestin Nzanzu Mudogo, Christian Betzel
Source: Crystals
Volume 9
Issue 12
Crystals 9(12), 620 (2019). doi:10.3390/cryst9120620
Publisher Information: MDPI AG, 2019.
Publication Year: 2019
Subject Terms: liquid–liquid phase separation, carbohydrate-binding protein, nucleation, liquid dense cluster, gelation, dynamic light scattering, 02 engineering and technology, 01 natural sciences, 3. Good health, 0104 chemical sciences, response surface methodology, 13. Climate action, depolarized dynamic light scattering, 0210 nano-technology
Description: Protein phase separation and protein liquid cluster formation have been observed and analysed in protein crystallization experiments and, in recent years, have been reported more frequently, especially in studies related to membraneless organelles and protein cluster formation in cells. A detailed understanding about the phase separation process preceding liquid dense cluster formation will elucidate what has, so far, been poorly understood—despite intracellular crowding and phase separation being very common processes—and will also provide more insights into the early events of in vitro protein crystallization. In this context, the phase separation and crystallization kinetics of concanavalin A were analysed in detail, which applies simultaneous dynamic light scattering and depolarized dynamic light scattering to obtain insights into metastable intermediate states between the soluble phase and the crystalline form. A multi-step mechanism was identified for ConA phase separation, according to the resultant ACF decay, acquired after an increase in the concentration of the crowding agent until a metastable ConA gel intermediate between the soluble and final crystalline phases was observed. The obtained results also revealed that ConA is trapped in a macromolecular network due to short-range intermolecular protein interactions and is unable to transform back into a non-ergodic solution.
Document Type: Article
Other literature type
File Description: application/pdf
Language: English
ISSN: 2073-4352
DOI: 10.3390/cryst9120620
DOI: 10.3204/pubdb-2024-00920
Access URL: https://www.mdpi.com/2073-4352/9/12/620/pdf
https://www.mdpi.com/2073-4352/9/12/620/pdf
https://www.mdpi.com/2073-4352/9/12/620
https://bib-pubdb1.desy.de/record/603735
Rights: CC BY
Accession Number: edsair.doi.dedup.....199ca1ba4dc2a6575ee2784edba12c9c
Database: OpenAIRE
Description
ISSN:20734352
DOI:10.3390/cryst9120620