Academic Journal

Sparse wavefield reconstruction and denoising with boostlets

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Sparse wavefield reconstruction and denoising with boostlets
Συγγραφείς: Zea, Elias, Laudato, Marco, Andén, Joakim
Πηγή: 2025 International Conference on Sampling Theory and Applications (SampTA). :1-5
Publication Status: Preprint
Στοιχεία εκδότη: IEEE, 2025.
Έτος έκδοσης: 2025
Θεματικοί όροι: FOS: Computer and information sciences, Sound (cs.SD), Beräkningsmatematik, wavefields, Signalbehandling, Fluid Mechanics, multi-scale representations, sparse reconstruction, Strömningsmekanik, Computer Science - Sound, Computational Mathematics, Audio and Speech Processing (eess.AS), Signal Processing, denoising, FOS: Electrical engineering, electronic engineering, information engineering, boostlets, Electrical Engineering and Systems Science - Audio and Speech Processing
Περιγραφή: Boostlets are spatiotemporal functions that decompose nondispersive wavefields into a collection of localized waveforms parametrized by dilations, hyperbolic rotations, and translations. We study the sparsity properties of boostlets and find that the resulting decompositions are significantly sparser than those of other state-of-the-art representation systems, such as wavelets and shearlets. This translates into improved denoising performance when hard-thresholding the boostlet coefficients. The results suggest that boostlets offer a natural framework for sparsely decomposing wavefields in unified space-time.
5 pages, 4 figures
Τύπος εγγράφου: Article
Conference object
Περιγραφή αρχείου: application/pdf
DOI: 10.1109/sampta64769.2025.11133531
DOI: 10.48550/arxiv.2502.08230
Σύνδεσμος πρόσβασης: http://arxiv.org/abs/2502.08230
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-369265
Rights: STM Policy #29
CC BY
Αριθμός Καταχώρησης: edsair.doi.dedup.....12bacf3375209aebfbd6d1c494c61ccf
Βάση Δεδομένων: OpenAIRE
Περιγραφή
DOI:10.1109/sampta64769.2025.11133531