Academic Journal

ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ МАРКОВСКОЙ МОДЕЛИ ДЛЯ СТАТИСТИЧЕСКОГО ОПИСАНИЯ ДИФФЕРЕНЦИАЛЬНОЙ РИТМОГРАММЫ: POSSIBILITIES OF APPLICATION OF MARKOV MODEL FOR STATISTICAL MODELING DIFFERENTIAL RHYTHMOGRAM

Bibliographic Details
Title: ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ МАРКОВСКОЙ МОДЕЛИ ДЛЯ СТАТИСТИЧЕСКОГО ОПИСАНИЯ ДИФФЕРЕНЦИАЛЬНОЙ РИТМОГРАММЫ: POSSIBILITIES OF APPLICATION OF MARKOV MODEL FOR STATISTICAL MODELING DIFFERENTIAL RHYTHMOGRAM
Source: Vestnik of Volga State University of Technology. Series Radio Engineering and Infocommunication Systems.
Publisher Information: Volga State University of Technology, 2019.
Publication Year: 2019
Subject Terms: вероятность, марковская модель, ритмограмма, статистические оценки, probability, statistical estimates, modeling, моделирование, information signals, информационные сигналы, Markov model, rhythmogram
Description: В статье рассматривается формирование марковской модели случайного процесса и оценки её параметров по поступающим реализациям. Описано применение марковских моделей для описания дифференциальной ритмограммы сердечнососудистой системы, выбраны интервалы квантования, приведены примеры. Получены оценки характеристик предлагаемой модели. Introduction. In various areas of human activities (medicine, technology, etc.), there are quasiperiodic processes. Their study and analysis require adequate statistical simulation models. The properties of theoretical models, for instance, the typical Gaussian random process, usually do not fit the processes in question. Thus, it is imperative to build models by the observed implementations of the processes. The aim of the research was to study the possibilities of application of Markov model for modeling differential rhythmogram. It seems rather promising to apply simple Markov model of a random process, which transition probability matrix contains a large number of parameters that can be estimated by the received process implementations. Conclusions. The model allows to display a variety of statistical and correlation properties. It is enabled to integrate estimates of the transition probabilities of the model by the onetype implementations of the random processes. Markov model can be employed in problems of classification of random processes by observed implementations. Analysis of the time properties (rhythmograms) of quasiperiodic processes and their modeling is conveniently carried out with the use of differences of adjoint periods (differential rhythmograms).
Document Type: Article
Language: Russian
ISSN: 2306-2819
DOI: 10.25686/2306-2819.2019.3.22
Accession Number: edsair.doi...........9567d26061daeda1c69e7714bf8473a9
Database: OpenAIRE
Description
ISSN:23062819
DOI:10.25686/2306-2819.2019.3.22