Academic Journal

Application of matrix filters and braid theory for the procedural generation of neural network architectures

Bibliographic Details
Title: Application of matrix filters and braid theory for the procedural generation of neural network architectures
Source: Вычислительные технологии.
Publisher Information: Federal Research Center for Information and Computational Technologies, 2019.
Publication Year: 2019
Subject Terms: теория кос, передача информации, deep learning, низкоразмерная топология, архитектура нейронных сетей, braid theory, neural networks, procedural generation, low-dimensional topology, нейронная сеть, information transfer, neural network architectures, глубокое обучение, процедурная генерация
Description: Представлены результаты исследований, связанных с автоматическим формированием архитектур нейронных сетей, состоящих из набора модулей. Реализован алгоритмический подход, основанный на формировании матриц активных модулей. Предложены способы процедурной генерации архитектур нейронных сетей для решения задач классификации. Дается описание процесса автоматического формирования архитектуры PathNet, реализованной на основе новых подходов, а также рассматриваются примеры генерации трех новых архитектур глубоких нейронных сетей (3DNN, GraphNet и BraidNet). Архитектура BraidNet включает в себя построение графа связей сети на основе теории кос. Исследование на примере задачи классификации изображений MNIST показало применимость всех четырех предложенных нейронных сетей к распознаванию образов. There are various approaches to the algorithmic specification of the network structure in the deep learning problems, which are successfully used in applications. These methods can be generalized by the concept of procedural generation of neural network architectures. Methodology. In the work, we use binary matrix filters. The filters are obtained with the help of the Hadamard product. Such filters define active network modules, thereby changing the way information is transmitted between layers. To build various architectures, the theory of braids is used in the work. The article reproduces the wellknown PathNet architecture. Examples of generating three new deep neural network architectures (3DNN, GraphNet, and BraidNet) are examined. Findings. The paper shows how the procedural generation of neural network architectures allows avoiding manually setting the network structure and automatically forming it. The use of matrix filters simplifies the process of generating network architecture due to a large number of possible combinations of modules and connections between them. Using the MNIST classification problem as an example, it is shown how the architectures presented in the article solve real-world pattern recognition problems. The results of application of neural networks indicate their diminishing tendency to retraining due to the subsequent convergence and the presence of stochastic dynamics in the learning process. Originality/value. Learning methods with dynamic adaptive changes in the network architecture allows achieving satisfactory accuracy faster and should also be less prone to retraining. The BraidNet algorithm presented in the article is applicable for ICT SB RAS, 2019 a convenient brief record of the structure of a neural network in genetic algorithms. Such features make BraidNet a promising algorithm for further application and research in complex problems of pattern recognition, including using neuroevolutionary approaches.
Document Type: Article
Language: Russian
ISSN: 2313-691X
1560-7534
DOI: 10.25743/ict.2019.24.6.009.
Accession Number: edsair.doi...........1ac6609e54cd7e897f4f44dd5898c1d7
Database: OpenAIRE
Be the first to leave a comment!
You must be logged in first