Academic Journal

Полуклассическая 3D модель КНИ МОП нанотранзистора с ультратонкой рабочей областью: Semiclassical 3D model SOI MOSFET nanotransistor with ultra thin channel

Bibliographic Details
Title: Полуклассическая 3D модель КНИ МОП нанотранзистора с ультратонкой рабочей областью: Semiclassical 3D model SOI MOSFET nanotransistor with ultra thin channel
Source: Труды НИИСИ РАН. 9:36-41
Publisher Information: Federal Scientific Center Scientific Research Institute for Systems Research of the Russian Academy of Sciences, 2020.
Publication Year: 2020
Subject Terms: метод разделения переменных, variable separation method, SOI CMOS nanotransistors, 2D уравнение Шредингера, 2D Schrodinger equation, 3D уравнение Пуассона, КНИ КМОП нанотранзистор, 7. Clean energy, асимметричная структура, 3D Poisson equation, asymmetric structure
Description: Обсуждается трехмерная модель наноразмерного КНИ МОП транзистора на основе самосогласованного решения 3D уравнение Пуассона и Шредингера, в которой проявляются превалирующие коротко-канальные и квантово-механические эффекты, ограничивающие масштабирование топологии транзистора. Данные уравнения решаются методом разделения переменных. Численно проанализирован с учетом дрейфового-диффузионного переноса заряда ток в прототипе транзистора с ультра тонкой низколегированной рабочей областью. Показано, что есть возможность частичной компенсации коротко- канальных и квантово-механических эффектов A three-dimensional model of a nanoscale SOI MOSFET based on a self-consistent solution of the 3D Poisson and Schrödinger equation is discussed, in which the prevailing short-channel and quantum mechanical effects limiting the scaling of the transistor topology are manifested. These equations are solved by separating the variables. The current in the prototype transistor with an ultra-thin low-doping channel area is numerically analyzed taking into account the drift-diffusion charge transfer. It is shown that there is a possibility of partial compensation of short-channel and quantum-mechanical effects.
Document Type: Article
Language: Russian
ISSN: 2225-7349
DOI: 10.25682/niisi.2019.5.0005
Accession Number: edsair.doi...........117be4f0d68fec3e2e1173c8a0a781df
Database: OpenAIRE
Be the first to leave a comment!
You must be logged in first