Academic Journal
Формирование методом магнетронного распыления многокомпонентных многослойных покрытий на основе AlN для применения в приборостроении: Formation by Magnetron Sputtering of Multicomponent Multilayer Coatings Based on ALN for Use in Instrumentation
| Τίτλος: | Формирование методом магнетронного распыления многокомпонентных многослойных покрытий на основе AlN для применения в приборостроении: Formation by Magnetron Sputtering of Multicomponent Multilayer Coatings Based on ALN for Use in Instrumentation |
|---|---|
| Πηγή: | Vestnik of Volga State University of Technology. Series Radio Engineering and Infocommunication Systems. :72-80 |
| Στοιχεία εκδότη: | Volga State University of Technology, 2022. |
| Έτος έκδοσης: | 2022 |
| Θεματικοί όροι: | Cr1–хAlхN, magnetron sputtering, Zr1–хAlхN, multicomponent coatings, Ti1–хAlхN, магнетронное распыление, многослойные покрытия, multilayer coatings, многокомпонентные покрытия |
| Περιγραφή: | данной статье рассмотрена последовательность технологических операций при формировании многослойных многокомпонентных покрытий Ti1–хAlхN, Zr1–хAlхN, Cr1–хAlхN методом реактивного магнетронного распыления для применения при упрочнении деталей информационно-измерительных приборов. Приведены основные технологические параметры процесса формирования покрытий. Для каждого образца многослойных покрытий получены значения микротвёрдости по Виккерсу, измеренные при различных значениях нагрузки на инденторе. Даны рекомендации по выбору последовательности чередования слоев Ti1–хAlхN, Zr1–хAlхN, Cr1–хAlхN при формировании многослойных упрочняющих покрытий. Introduction. Multicomponent compounds of metals and AlN are used as a promising material to protect the surface of elements of information measuring devices and machine parts from hot corrosion and wear when working at high temperatures. The nanostructure of each layer in a multilayer coating enhances its protective effect: the fine-grained equiaxed surface structure of the nanostructured coating with minimal roughness significantly reduces the coefficient of friction; a dense structure with a predominant crystallographic orientation and a minimum amount of amorphous phase increases the protective effect of the coating; the minimum size of the crystallites of the nanostructured coating contributes to its physical and mechanical properties. Improved physical and mechanical properties and increased thermal and chemical stability of Ti1-xAlxN, Zr1–xAlxN, Cr1–xAlxN coatings, compared with two–component coatings TiN, ZrN, CrN are based on the inclusion of aluminum in their crystal structure. The aim of the work is to increase the microhardness of multicomponent multilayer coatings TiN, ZrN and CrN by incorporating aluminum into their crystal structure by reactive magnetron sputtering. To achieve the goal, the following tasks were solved: to form a series of multicomponent coatings Zr1–xAlxN – Cr1–xAlxN – Ti1-xAlxN by reactive magnetron sputtering; to measure the microhardness of the obtained multicomponent coatings using the Vickers technique; to develop recommendations on the optimal choice of alternating layers in the formation of multicomponent coatings Zr1–xAlxN – Cr1–xAlxN – Ti1-xAlxN by reactive magnetron sputtering. Conclusions. An experimental series of multilayer multicomponent coatings Zr1–xAlxN – Cr1–xAlxN – Ti1-xAlxN was formed by the method of reactive magnetron sputtering on the upgraded NHV–6 installations, 18X12N10T grade steel was used as substrates. During the analysis of the results of measuring the microhardness of multicomponent coatings formed by magnetron sputtering, it was revealed that the average hardness values differ significantly from the typical values of single-layer films TiN (HV0.05 = 2600) and ZrN (HV0.05= 2500) obtained under the same technological conditions on substrates of the same material. It can be explained by inclusion of Al in the crystal lattice of multicomponent coatings, as well as their multilayer structure. The maximum average hardness among multicomponent coatings has a multilayer structure Zr1–xAlxN (top layer), medium Ti1–xAlxN (middle layer), Cr1–xAlxN (layer at the substrate). This alternation of layers can be recommended as optimal in the formation of reinforcing multilayer coatings. |
| Τύπος εγγράφου: | Article |
| Γλώσσα: | Russian |
| ISSN: | 2306-2819 |
| DOI: | 10.25686/2306-2819.2022.3.72 |
| Αριθμός Καταχώρησης: | edsair.doi...........071f330ad2506ed87976c6f2bf3427dd |
| Βάση Δεδομένων: | OpenAIRE |
καταχωρήστε σχόλιο πρώτοι!