Academic Journal

Conditional likelihood based inference on single-index models for motor insurance claim severity

Bibliographic Details
Title: Conditional likelihood based inference on single-index models for motor insurance claim severity
Authors: Bolancé, Catalina, Cao, Ricardo, Guillén, Montserrat
Source: Articles publicats en revistes (Econometria, Estadística i Economia Aplicada)
Dipòsit Digital de la UB
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Publisher Information: Institut d'Estadística de Catalunya, 2024.
Publication Year: 2024
Subject Terms: Estadística matemàtica, telematics covariates, social and behavioral sciences, kernel estimator, Classificació AMS::91 Game theory, economics, Classificació AMS::62 Statistics::62P Applications, Assegurances d'automòbils, Classificació AMS::91 Game theory, economics, social and behavioral sciences, Estimació d'un paràmetre, Mathematical statistics, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, Anàlisi de variància, Parameter estimation, covariance matrix of estimator, Automobile insurance, Classificació AMS::62 Statistics::62G Nonparametric inference, Analysis of variance, right-skewed cost variable, marginal effects
Description: Prediction of a traffic accident cost is one of the major problems in motor insurance. To identify the factors that influence costs is one of the main challenges of actuarial modelling. Telematics data about individual driving patterns could help calculating the expected claim severity in motor insurance. We propose using single-index models to assess the marginal effects of covariates on the claim severity conditional distribution. Thus, drivers with a claim cost distribution that has a long tail can be identified. These are risky drivers, who should pay a higher insurance premium and for whom preventative actions can be designed. A new kernel approach to estimate the covariance matrix of coefficients’ estimator is outlined. Its statistical properties are described and an application to an innovative data set containing information on driving styles is presented. The method provides good results when the response variable is skewed.
Document Type: Article
File Description: application/pdf
Language: English
DOI: 10.57645/20.8080.02.20
Access URL: https://hdl.handle.net/2445/221797
https://hdl.handle.net/2183/39065
Rights: CC BY NC ND
Accession Number: edsair.dedup.wf.002..fc515e31b224eb3b3db2af76c5db39a9
Database: OpenAIRE
Description
DOI:10.57645/20.8080.02.20