Topological entropy of Turing complete dynamics

Bibliographic Details
Title: Topological entropy of Turing complete dynamics
Authors: Bruera Méndez, Renzo, Cardona Aguilar, Robert, Miranda Galcerán, Eva, Peralta-Salas, Daniel
Contributors: Universitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. TF-EDP - Grup de Teoria de Funcions i Equacions en Derivades Parcials, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Source: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Publisher Information: 2024.
Publication Year: 2024
Subject Terms: Classificació AMS::37 Dynamical systems and ergodic theory::37B Topological dynamics, Dinàmica topològica, Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics, Topological dynamics
Description: We explore the relationship between Turing completeness and topological entropy of dynamical systems. We first prove that a natural class of Turing machines that we call “regular Turing machines” (which includes most of the examples of universal Turing machines) has positive topological entropy. We deduce that any Turing complete dynamics with a continuous encoding that simulates a universal machine in this class is chaotic. This applies to our previous constructions of Turing complete area-preserving diffeomorphisms of the disk and 3D stationary Euler flows. The article concludes with an appendix written by Ville Salo that introduces a method to construct universal Turing machines that are not regular and have zero topological entropy.
Document Type: Report
File Description: application/pdf
Language: English
DOI: 10.48550/arxiv.2404.07288
Access URL: https://arxiv.org/pdf/2404.07288
https://doi.org/10.48550/arxiv.2404.07288
https://hdl.handle.net/2117/419715
Accession Number: edsair.dedup.wf.002..e3d37352f76f83d45eb2141aebd53ec2
Database: OpenAIRE
Description
DOI:10.48550/arxiv.2404.07288