Dissertation/ Thesis
Implementation of the temporal fusion transformer for demand forecasting
| Title: | Implementation of the temporal fusion transformer for demand forecasting |
|---|---|
| Authors: | Llaquet Vélez, Santiago |
| Contributors: | Zamora Fernandez, Sergi, Universitat de Barcelona, Accenture |
| Source: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
| Publisher Information: | Universitat Politècnica de Catalunya, 2025. |
| Publication Year: | 2025 |
| Subject Terms: | Classificació AMS::91 Game theory, economics, social and behavioral sciences::91B Mathematical economics, Àrees temàtiques de la UPC::Matemàtiques i estadística, Time Series Forecasting, Demand Forecasting, Multi-Horizon Forecasting, social and behavioral sciences::91B Mathematical economics, Classificació AMS::91 Game theory, economics, Transformer-based models, Deep Learning, Predicció (Estadística), Classificació AMS::68 Computer science::68T Artificial intelligence, Machine learning, Explainable AI, Supply Chain, Aprenentatge automàtic, Classificació AMS::62 Statistics::62M Inference from stochastic processes, Interpretability, Forecasting, Aprenentatge profund |
| Description: | Time Series Forecasting plays a pivotal role across many domains, with Demand Forecasting being particularly essential for effective business planning and decision-making. While classical time series methods and Machine Learning models have achieved considerable success, they face limitations in capturing complex temporal dynamics, scaling to high-dimensional data, and offering robust interpretability. Deep Learning offers a promising alternative capable of addressing these limitations. The Temporal Fusion Transformer (TFT), a state-of-the-art Deep Learning architecture, advances multi-horizon forecasting by combining superior performance with interpretability. TFT addresses key challenges in traditional approaches through sequence encoders for local temporal processing, self-attention mechanisms for long-term dependencies, and gating mechanisms to filter irrelevant inputs, ensuring adaptability and scalability across diverse scenarios. This thesis presents an implementation of TFT for Demand Forecasting, focusing on architectural enhancements, improved performance over established methods, enhanced explainability, and practical applicability. It also evaluates TFT’s ability to address the common challenges of Transformer-based models in Time Series Forecasting. The findings assert TFT’s potential as a transformative tool for advancing Demand Forecasting methodologies and bridging the gap between state-of-the-art research and real-world business needs. |
| Document Type: | Master thesis |
| File Description: | application/pdf |
| Language: | English |
| Access URL: | https://hdl.handle.net/2117/424614 |
| Rights: | CC BY NC ND |
| Accession Number: | edsair.dedup.wf.002..cb559f90b6fbd77f8b5812cc985d90ff |
| Database: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=dedup_wf_002%3A%3Acb559f90b6fbd77f8b5812cc985d90ff Name: EDS - OpenAIRE (ns324271) Category: fullText Text: View record at OpenAIRE |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.dedup.wf.002..cb559f90b6fbd77f8b5812cc985d90ff RelevancyScore: 887 AccessLevel: 3 PubType: Dissertation/ Thesis PubTypeId: dissertation PreciseRelevancyScore: 886.736389160156 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Implementation of the temporal fusion transformer for demand forecasting – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Llaquet+Vélez%2C+Santiago%22">Llaquet Vélez, Santiago</searchLink> – Name: Author Label: Contributors Group: Au Data: Zamora Fernandez, Sergi<br />Universitat de Barcelona<br />Accenture – Name: TitleSource Label: Source Group: Src Data: UPCommons. Portal del coneixement obert de la UPC<br />Universitat Politècnica de Catalunya (UPC) – Name: Publisher Label: Publisher Information Group: PubInfo Data: Universitat Politècnica de Catalunya, 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Classificació+AMS%3A%3A91+Game+theory%2C+economics%2C+social+and+behavioral+sciences%3A%3A91B+Mathematical+economics%22">Classificació AMS::91 Game theory, economics, social and behavioral sciences::91B Mathematical economics</searchLink><br /><searchLink fieldCode="DE" term="%22Àrees+temàtiques+de+la+UPC%3A%3AMatemàtiques+i+estadística%22">Àrees temàtiques de la UPC::Matemàtiques i estadística</searchLink><br /><searchLink fieldCode="DE" term="%22Time+Series+Forecasting%22">Time Series Forecasting</searchLink><br /><searchLink fieldCode="DE" term="%22Demand+Forecasting%22">Demand Forecasting</searchLink><br /><searchLink fieldCode="DE" term="%22Multi-Horizon+Forecasting%22">Multi-Horizon Forecasting</searchLink><br /><searchLink fieldCode="DE" term="%22social+and+behavioral+sciences%3A%3A91B+Mathematical+economics%22">social and behavioral sciences::91B Mathematical economics</searchLink><br /><searchLink fieldCode="DE" term="%22Classificació+AMS%3A%3A91+Game+theory%22">Classificació AMS::91 Game theory</searchLink><br /><searchLink fieldCode="DE" term="%22economics%22">economics</searchLink><br /><searchLink fieldCode="DE" term="%22Transformer-based+models%22">Transformer-based models</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+Learning%22">Deep Learning</searchLink><br /><searchLink fieldCode="DE" term="%22Predicció+%28Estadística%29%22">Predicció (Estadística)</searchLink><br /><searchLink fieldCode="DE" term="%22Classificació+AMS%3A%3A68+Computer+science%3A%3A68T+Artificial+intelligence%22">Classificació AMS::68 Computer science::68T Artificial intelligence</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+learning%22">Machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22Explainable+AI%22">Explainable AI</searchLink><br /><searchLink fieldCode="DE" term="%22Supply+Chain%22">Supply Chain</searchLink><br /><searchLink fieldCode="DE" term="%22Aprenentatge+automàtic%22">Aprenentatge automàtic</searchLink><br /><searchLink fieldCode="DE" term="%22Classificació+AMS%3A%3A62+Statistics%3A%3A62M+Inference+from+stochastic+processes%22">Classificació AMS::62 Statistics::62M Inference from stochastic processes</searchLink><br /><searchLink fieldCode="DE" term="%22Interpretability%22">Interpretability</searchLink><br /><searchLink fieldCode="DE" term="%22Forecasting%22">Forecasting</searchLink><br /><searchLink fieldCode="DE" term="%22Aprenentatge+profund%22">Aprenentatge profund</searchLink> – Name: Abstract Label: Description Group: Ab Data: Time Series Forecasting plays a pivotal role across many domains, with Demand Forecasting being particularly essential for effective business planning and decision-making. While classical time series methods and Machine Learning models have achieved considerable success, they face limitations in capturing complex temporal dynamics, scaling to high-dimensional data, and offering robust interpretability. Deep Learning offers a promising alternative capable of addressing these limitations. The Temporal Fusion Transformer (TFT), a state-of-the-art Deep Learning architecture, advances multi-horizon forecasting by combining superior performance with interpretability. TFT addresses key challenges in traditional approaches through sequence encoders for local temporal processing, self-attention mechanisms for long-term dependencies, and gating mechanisms to filter irrelevant inputs, ensuring adaptability and scalability across diverse scenarios. This thesis presents an implementation of TFT for Demand Forecasting, focusing on architectural enhancements, improved performance over established methods, enhanced explainability, and practical applicability. It also evaluates TFT’s ability to address the common challenges of Transformer-based models in Time Series Forecasting. The findings assert TFT’s potential as a transformative tool for advancing Demand Forecasting methodologies and bridging the gap between state-of-the-art research and real-world business needs. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Master thesis – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: Language Label: Language Group: Lang Data: English – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://hdl.handle.net/2117/424614" linkWindow="_blank">https://hdl.handle.net/2117/424614</link> – Name: Copyright Label: Rights Group: Cpyrght Data: CC BY NC ND – Name: AN Label: Accession Number Group: ID Data: edsair.dedup.wf.002..cb559f90b6fbd77f8b5812cc985d90ff |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.dedup.wf.002..cb559f90b6fbd77f8b5812cc985d90ff |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English Subjects: – SubjectFull: Classificació AMS::91 Game theory, economics, social and behavioral sciences::91B Mathematical economics Type: general – SubjectFull: Àrees temàtiques de la UPC::Matemàtiques i estadística Type: general – SubjectFull: Time Series Forecasting Type: general – SubjectFull: Demand Forecasting Type: general – SubjectFull: Multi-Horizon Forecasting Type: general – SubjectFull: social and behavioral sciences::91B Mathematical economics Type: general – SubjectFull: Classificació AMS::91 Game theory Type: general – SubjectFull: economics Type: general – SubjectFull: Transformer-based models Type: general – SubjectFull: Deep Learning Type: general – SubjectFull: Predicció (Estadística) Type: general – SubjectFull: Classificació AMS::68 Computer science::68T Artificial intelligence Type: general – SubjectFull: Machine learning Type: general – SubjectFull: Explainable AI Type: general – SubjectFull: Supply Chain Type: general – SubjectFull: Aprenentatge automàtic Type: general – SubjectFull: Classificació AMS::62 Statistics::62M Inference from stochastic processes Type: general – SubjectFull: Interpretability Type: general – SubjectFull: Forecasting Type: general – SubjectFull: Aprenentatge profund Type: general Titles: – TitleFull: Implementation of the temporal fusion transformer for demand forecasting Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Llaquet Vélez, Santiago – PersonEntity: Name: NameFull: Zamora Fernandez, Sergi – PersonEntity: Name: NameFull: Universitat de Barcelona – PersonEntity: Name: NameFull: Accenture IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-locals Value: edsair – Type: issn-locals Value: edsairFT |
| ResultId | 1 |