Optimizing execution on large-scale infrastructures by integrating task-based workflows and MPI

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Optimizing execution on large-scale infrastructures by integrating task-based workflows and MPI
Συγγραφείς: Elshazly, Hatem Mohamed Abdelfattah Eid, Lordan, Francesc, Ejarque, Jorge, Badia Sala, Rosa Maria
Πηγή: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Στοιχεία εκδότη: Barcelona Supercomputing Center, 2021.
Έτος έκδοσης: 2021
Θεματικοί όροι: Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors, Performance, High Performance Computing, Task-based Parallel Programming Models, Hybrid Programming Models, MPI, High performance computing, Informàtica::Arquitectura de computadors [Àrees temàtiques de la UPC], Càlcul intensiu (Informàtica), Hybrid Programming Models, MPI, Task-based Parallel Programming Models, Performance, Productivity, High Performance Computing, Productivity
Περιγραφή: While MPI [1] + X (where X is another parallel programming model) has been proposed and used by the community, we propose a hybrid programming model that combines taskbased model + MPI. Task-based workflows offer the necessary abstraction to simplify the application development for large scale execution, and supporting tasks that launch MPI executions enables to exploit the performance capabilities of manycore systems. Hence, application programmers can get the maximum performance out of the underlying systems without compromising the programmability of the application. We present an extension to PyCOMPSs framework [2], a task-based parallel programming model for the execution of Python applications. Throughout this paper, we name the tasks that natively execute MPI code as Native MPI Tasks, as opposed to tasks that call external MPI binaries. Having Native MPI tasks as part of the programming model means that in the same source file users can have two types of task: tasks that execute MPI code and other tasks that execute non- MPI code. PyCOMPSs organizes the tasks in Directed Acyclic Graph (DAG) and manages their scheduling and execution, hence users can focus only on the logic of the task.
Τύπος εγγράφου: Conference object
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://hdl.handle.net/2117/346261
https://hdl.handle.net/2117/346261
Αριθμός Καταχώρησης: edsair.dedup.wf.002..c886331647bb7d0d0edf671e28a80db9
Βάση Δεδομένων: OpenAIRE