Academic Journal

Unusual-event processes for count data

Bibliographic Details
Title: Unusual-event processes for count data
Authors: Skulpakdee, Wanrudee, Hunkrajok, Mongkol
Source: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
SORT-Statistics and Operations Research Transactions; Vol. 46, Núm. 1 (2022); 39-66
SORT-Statistics and Operations Research Transactions; 2022: Vol.: 46 Núm.: 1 January-June; 39-66
oai:raco.cat:article/401117
Repositori Institucional de la Universitat Rovira i Virgili
Universitat Rovira i virgili (URV)
Publisher Information: Institut d'Estadística de Catalunya, 2022.
Publication Year: 2022
Subject Terms: Classificació AMS::62 Statistics::62J Linear inference, Weibull count model, 62J Inferència lineal, regressió, Classificació AMS::62 Statistics::62J Linear inference, regression, Classificació AMS::62 Statistics::62P Applications, Gamma count model, Mathematical statistics, Regression analysis, Conway-Maxwell-Poisson count model, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, Classificació AMS::62 Statistics::62M Inference from stochastic processes, Faddy count model, regression, Poisson count model, regressió, 62J Inferència lineal, 62P Aplicacions, 62M Inferència dels processos estocàstics
Description: At least one unusual event appears in some count datasets. It will lead to a more concentrated (or dispersed) distribution than the Poisson, gamma, Weibull, Conway-Maxwell-Poisson (CMP), and Faddy (1997) models can accommodate. These well-known count models are based on the monotonic rates of interarrival times between successive events. Under the assumption of non-monotonic rates and independent exponential interarrival times, a new class of parametric models for unusual-event (UE) count data is proposed. These models are applied to two empirical applications, the number of births and the number of bids, and yield considerably better results to the above well-known count models.
Document Type: Article
File Description: application/pdf; application/zip
Language: English
DOI: 10.2436/20.8080.02.117
Access URL: http://hdl.handle.net/20.500.11797/RP4886
https://ddd.uab.cat/record/264543
https://hdl.handle.net/2117/397827
https://doi.org/10.2436/20.8080.02.117
Rights: CC BY NC ND
Accession Number: edsair.dedup.wf.002..9a064ba6c5ab030cbe80296d7513e4d1
Database: OpenAIRE
Be the first to leave a comment!
You must be logged in first