Conference
Policy graphs and intention: answering 'why' and 'how' from a telic perspective
| Title: | Policy graphs and intention: answering 'why' and 'how' from a telic perspective |
|---|---|
| Authors: | Giménez Ábalos, Víctor, Álvarez Napagao, Sergio, Tormos Llorente, Adrián, Cortés García, Claudio Ulises, Vázquez Salceda, Javier |
| Source: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
| Publisher Information: | International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), 2025. |
| Publication Year: | 2025 |
| Subject Terms: | Explainable agency, Telic explanations, XAI, Post-hoc explainability, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Agents intel·ligents, Interpretability, Intentions, Reliability, Agent explainability |
| Description: | Agents are a special kind of AI-based software in that they interact in complex environments and have increased potential for emergent behaviour. Explaining such behaviour is key to deploying trustworthy AI, but the increasing complexity and opaque nature of many agent implementations makes this hard. In this work, we reuse the Policy Graphs method --which can be used to explain opaque agent behaviour-- and enhance it to query it with hypotheses of desirable situations. These hypotheses are used to compute a numerical value to examine agent intentions at any particular moment, as a function of how likely the agent is to bring about a hypothesised desirable situation. We emphasise the relevance of how this approach has full epistemic traceability, and each belief used by the algorithms providing answers is backed by specific facts from its construction process. We show the numeric approach provides a robust and intuitive way to provide telic explainability (explaining current actions from the perspective of bringing about situations), and allows to evaluate the interpretability of behaviour of the agent based on the explanations; and it opens the door to explainability that is useful not only to the human, but to an agent. This work has been partially supported by the AI4EUROPE (Grant agreement ID: 101070000), SoBigData PPP (Grant agreement ID: 101079043) and V. Giménez-Abalos fellowship within the “Generación D” initiative, Red.es, Ministerio para la Transformación Digital y de la Función Pública, for talent atraction (C005/24-ED CV1). Funded by the European Union NextGenerationEU funds, through PRTR. |
| Document Type: | Conference object |
| File Description: | application/pdf |
| Language: | English |
| DOI: | 10.5555/3709347.3743609 |
| Rights: | CC BY |
| Accession Number: | edsair.dedup.wf.002..84a7236c462a2f81a623daf7d35ed8d0 |
| Database: | OpenAIRE |
| FullText | Text: Availability: 0 |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.dedup.wf.002..84a7236c462a2f81a623daf7d35ed8d0 RelevancyScore: 980 AccessLevel: 3 PubType: Conference PubTypeId: conference PreciseRelevancyScore: 979.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Policy graphs and intention: answering 'why' and 'how' from a telic perspective – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Giménez+Ábalos%2C+Víctor%22">Giménez Ábalos, Víctor</searchLink><br /><searchLink fieldCode="AR" term="%22Álvarez+Napagao%2C+Sergio%22">Álvarez Napagao, Sergio</searchLink><br /><searchLink fieldCode="AR" term="%22Tormos+Llorente%2C+Adrián%22">Tormos Llorente, Adrián</searchLink><br /><searchLink fieldCode="AR" term="%22Cortés+García%2C+Claudio+Ulises%22">Cortés García, Claudio Ulises</searchLink><br /><searchLink fieldCode="AR" term="%22Vázquez+Salceda%2C+Javier%22">Vázquez Salceda, Javier</searchLink> – Name: TitleSource Label: Source Group: Src Data: UPCommons. Portal del coneixement obert de la UPC<br />Universitat Politècnica de Catalunya (UPC) – Name: Publisher Label: Publisher Information Group: PubInfo Data: International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Explainable+agency%22">Explainable agency</searchLink><br /><searchLink fieldCode="DE" term="%22Telic+explanations%22">Telic explanations</searchLink><br /><searchLink fieldCode="DE" term="%22XAI%22">XAI</searchLink><br /><searchLink fieldCode="DE" term="%22Post-hoc+explainability%22">Post-hoc explainability</searchLink><br /><searchLink fieldCode="DE" term="%22Àrees+temàtiques+de+la+UPC%3A%3AInformàtica%3A%3AIntel·ligència+artificial%3A%3AAgents+intel·ligents%22">Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Agents intel·ligents</searchLink><br /><searchLink fieldCode="DE" term="%22Interpretability%22">Interpretability</searchLink><br /><searchLink fieldCode="DE" term="%22Intentions%22">Intentions</searchLink><br /><searchLink fieldCode="DE" term="%22Reliability%22">Reliability</searchLink><br /><searchLink fieldCode="DE" term="%22Agent+explainability%22">Agent explainability</searchLink> – Name: Abstract Label: Description Group: Ab Data: Agents are a special kind of AI-based software in that they interact in complex environments and have increased potential for emergent behaviour. Explaining such behaviour is key to deploying trustworthy AI, but the increasing complexity and opaque nature of many agent implementations makes this hard. In this work, we reuse the Policy Graphs method --which can be used to explain opaque agent behaviour-- and enhance it to query it with hypotheses of desirable situations. These hypotheses are used to compute a numerical value to examine agent intentions at any particular moment, as a function of how likely the agent is to bring about a hypothesised desirable situation. We emphasise the relevance of how this approach has full epistemic traceability, and each belief used by the algorithms providing answers is backed by specific facts from its construction process. We show the numeric approach provides a robust and intuitive way to provide telic explainability (explaining current actions from the perspective of bringing about situations), and allows to evaluate the interpretability of behaviour of the agent based on the explanations; and it opens the door to explainability that is useful not only to the human, but to an agent.<br />This work has been partially supported by the AI4EUROPE (Grant agreement ID: 101070000), SoBigData PPP (Grant agreement ID: 101079043) and V. Giménez-Abalos fellowship within the “Generación D” initiative, Red.es, Ministerio para la Transformación Digital y de la Función Pública, for talent atraction (C005/24-ED CV1). Funded by the European Union NextGenerationEU funds, through PRTR. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Conference object – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: Language Label: Language Group: Lang Data: English – Name: DOI Label: DOI Group: ID Data: 10.5555/3709347.3743609 – Name: Copyright Label: Rights Group: Cpyrght Data: CC BY – Name: AN Label: Accession Number Group: ID Data: edsair.dedup.wf.002..84a7236c462a2f81a623daf7d35ed8d0 |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.dedup.wf.002..84a7236c462a2f81a623daf7d35ed8d0 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.5555/3709347.3743609 Languages: – Text: English Subjects: – SubjectFull: Explainable agency Type: general – SubjectFull: Telic explanations Type: general – SubjectFull: XAI Type: general – SubjectFull: Post-hoc explainability Type: general – SubjectFull: Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Agents intel·ligents Type: general – SubjectFull: Interpretability Type: general – SubjectFull: Intentions Type: general – SubjectFull: Reliability Type: general – SubjectFull: Agent explainability Type: general Titles: – TitleFull: Policy graphs and intention: answering 'why' and 'how' from a telic perspective Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Giménez Ábalos, Víctor – PersonEntity: Name: NameFull: Álvarez Napagao, Sergio – PersonEntity: Name: NameFull: Tormos Llorente, Adrián – PersonEntity: Name: NameFull: Cortés García, Claudio Ulises – PersonEntity: Name: NameFull: Vázquez Salceda, Javier IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-locals Value: edsair – Type: issn-locals Value: edsairFT |
| ResultId | 1 |