Report
Bohr-Sommerfeld quantization of b-symplectic toric manifolds
| Title: | Bohr-Sommerfeld quantization of b-symplectic toric manifolds |
|---|---|
| Authors: | Miranda Galcerán, Eva, Mir Garcia, Pau, Weitsman, Jonathan |
| Contributors: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions |
| Source: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
| Publisher Information: | 2022. |
| Publication Year: | 2022 |
| Subject Terms: | contact geometry, T-modules, Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria, Classificació AMS::53 Differential geometry::53D Symplectic geometry, Bohr-Sommerfeld, Symplectic geometry, Geometria simplèctica, 53 Differential geometry::53D Symplectic geometry, contact geometry [Classificació AMS], Classificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry, toric, Matemàtiques i estadística::Geometria [Àrees temàtiques de la UPC] |
| Description: | We define the Bohr-Sommerfeld quantization via T-modules for a b-symplectic toric manifold and show that it coincides with the formal geometric quantization of [GMW18b]. In particular, we prove that its dimension is given by a signed count of the integral points in the moment polytope of the toric action on the manifold. Finançat pel projecte ICREA ACADEMIA 2016-05 i ICREA ACADEMIA 2021 |
| Document Type: | Report |
| File Description: | application/pdf |
| Language: | English |
| Access URL: | http://hdl.handle.net/2117/371509 https://hdl.handle.net/2117/371509 https://arxiv.org/abs/2203.03340 https://hdl.handle.net/2117/371509 |
| Rights: | CC BY NC ND |
| Accession Number: | edsair.dedup.wf.002..6d3dd22eb2ca2ca12f31094ccad39cda |
| Database: | OpenAIRE |
| Description not available. |