Academic Journal
Totally positive polynomials with small length
| Τίτλος: | Totally positive polynomials with small length |
|---|---|
| Συγγραφείς: | Flammang, V., Sac-Epee, Jean-Marc |
| Συνεισφορές: | Sac-Epee, Jean-Marc |
| Στοιχεία εκδότη: | De Gruyter (Sciendo), Warsaw, Polish Academy of Sciences (Polska Akademia Nauk - PAN), Systems Research Institute, Warsaw, 2019. |
| Έτος έκδοσης: | 2019 |
| Θεματικοί όροι: | length of polynomials, Linear programming, auxiliary functions, Polynomials in number theory, [MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] |
| Περιγραφή: | In this work we provide a list of irreducible monic polynomials with integer coefficients and lengths below 2.3679 d for a degree d polynomial. Our approach combines techniques based on auxiliary functions and mixed-integer linear programming algorithms. The list obtained shows that there are polynomials of this type up to degree 16, with the exception of degree 11 where we are very close to the threshold. |
| Τύπος εγγράφου: | Article |
| Περιγραφή αρχείου: | application/pdf; application/xml |
| Γλώσσα: | English |
| Σύνδεσμος πρόσβασης: | https://hal.science/hal-02871261v1 https://zbmath.org/7351023 |
| Αριθμός Καταχώρησης: | edsair.dedup.wf.002..04bff1e003c94574e35b64ec7c186112 |
| Βάση Δεδομένων: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=dedup_wf_002%3A%3A04bff1e003c94574e35b64ec7c186112 Name: EDS - OpenAIRE (ns324271) Category: fullText Text: View record at OpenAIRE |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.dedup.wf.002..04bff1e003c94574e35b64ec7c186112 RelevancyScore: 822 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 822.259582519531 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Totally positive polynomials with small length – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Flammang%2C+V%2E%22">Flammang, V.</searchLink><br /><searchLink fieldCode="AR" term="%22Sac-Epee%2C+Jean-Marc%22">Sac-Epee, Jean-Marc</searchLink> – Name: Author Label: Contributors Group: Au Data: Sac-Epee, Jean-Marc – Name: Publisher Label: Publisher Information Group: PubInfo Data: De Gruyter (Sciendo), Warsaw, Polish Academy of Sciences (Polska Akademia Nauk - PAN), Systems Research Institute, Warsaw, 2019. – Name: DatePubCY Label: Publication Year Group: Date Data: 2019 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22length+of+polynomials%22">length of polynomials</searchLink><br /><searchLink fieldCode="DE" term="%22Linear+programming%22">Linear programming</searchLink><br /><searchLink fieldCode="DE" term="%22auxiliary+functions%22">auxiliary functions</searchLink><br /><searchLink fieldCode="DE" term="%22Polynomials+in+number+theory%22">Polynomials in number theory</searchLink><br /><searchLink fieldCode="DE" term="%22[MATH%2EMATH-NT]+Mathematics+[math]%2FNumber+Theory+[math%2ENT]%22">[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]</searchLink> – Name: Abstract Label: Description Group: Ab Data: In this work we provide a list of irreducible monic polynomials with integer coefficients and lengths below 2.3679 d for a degree d polynomial. Our approach combines techniques based on auxiliary functions and mixed-integer linear programming algorithms. The list obtained shows that there are polynomials of this type up to degree 16, with the exception of degree 11 where we are very close to the threshold. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article – Name: Format Label: File Description Group: SrcInfo Data: application/pdf; application/xml – Name: Language Label: Language Group: Lang Data: English – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://hal.science/hal-02871261v1" linkWindow="_blank">https://hal.science/hal-02871261v1</link><br /><link linkTarget="URL" linkTerm="https://zbmath.org/7351023" linkWindow="_blank">https://zbmath.org/7351023</link> – Name: AN Label: Accession Number Group: ID Data: edsair.dedup.wf.002..04bff1e003c94574e35b64ec7c186112 |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.dedup.wf.002..04bff1e003c94574e35b64ec7c186112 |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English Subjects: – SubjectFull: length of polynomials Type: general – SubjectFull: Linear programming Type: general – SubjectFull: auxiliary functions Type: general – SubjectFull: Polynomials in number theory Type: general – SubjectFull: [MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] Type: general Titles: – TitleFull: Totally positive polynomials with small length Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Flammang, V. – PersonEntity: Name: NameFull: Sac-Epee, Jean-Marc – PersonEntity: Name: NameFull: Sac-Epee, Jean-Marc IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2019 Identifiers: – Type: issn-locals Value: edsair – Type: issn-locals Value: edsairFT |
| ResultId | 1 |