Academic Journal

Totally positive polynomials with small length

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Totally positive polynomials with small length
Συγγραφείς: Flammang, V., Sac-Epee, Jean-Marc
Συνεισφορές: Sac-Epee, Jean-Marc
Στοιχεία εκδότη: De Gruyter (Sciendo), Warsaw, Polish Academy of Sciences (Polska Akademia Nauk - PAN), Systems Research Institute, Warsaw, 2019.
Έτος έκδοσης: 2019
Θεματικοί όροι: length of polynomials, Linear programming, auxiliary functions, Polynomials in number theory, [MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
Περιγραφή: In this work we provide a list of irreducible monic polynomials with integer coefficients and lengths below 2.3679 d for a degree d polynomial. Our approach combines techniques based on auxiliary functions and mixed-integer linear programming algorithms. The list obtained shows that there are polynomials of this type up to degree 16, with the exception of degree 11 where we are very close to the threshold.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/pdf; application/xml
Γλώσσα: English
Σύνδεσμος πρόσβασης: https://hal.science/hal-02871261v1
https://zbmath.org/7351023
Αριθμός Καταχώρησης: edsair.dedup.wf.002..04bff1e003c94574e35b64ec7c186112
Βάση Δεδομένων: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://explore.openaire.eu/search/publication?articleId=dedup_wf_002%3A%3A04bff1e003c94574e35b64ec7c186112
    Name: EDS - OpenAIRE (ns324271)
    Category: fullText
    Text: View record at OpenAIRE
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.dedup.wf.002..04bff1e003c94574e35b64ec7c186112
RelevancyScore: 822
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 822.259582519531
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Totally positive polynomials with small length
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Flammang%2C+V%2E%22">Flammang, V.</searchLink><br /><searchLink fieldCode="AR" term="%22Sac-Epee%2C+Jean-Marc%22">Sac-Epee, Jean-Marc</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Sac-Epee, Jean-Marc
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: De Gruyter (Sciendo), Warsaw, Polish Academy of Sciences (Polska Akademia Nauk - PAN), Systems Research Institute, Warsaw, 2019.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2019
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22length+of+polynomials%22">length of polynomials</searchLink><br /><searchLink fieldCode="DE" term="%22Linear+programming%22">Linear programming</searchLink><br /><searchLink fieldCode="DE" term="%22auxiliary+functions%22">auxiliary functions</searchLink><br /><searchLink fieldCode="DE" term="%22Polynomials+in+number+theory%22">Polynomials in number theory</searchLink><br /><searchLink fieldCode="DE" term="%22[MATH%2EMATH-NT]+Mathematics+[math]%2FNumber+Theory+[math%2ENT]%22">[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this work we provide a list of irreducible monic polynomials with integer coefficients and lengths below 2.3679 d for a degree d polynomial. Our approach combines techniques based on auxiliary functions and mixed-integer linear programming algorithms. The list obtained shows that there are polynomials of this type up to degree 16, with the exception of degree 11 where we are very close to the threshold.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf; application/xml
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://hal.science/hal-02871261v1" linkWindow="_blank">https://hal.science/hal-02871261v1</link><br /><link linkTarget="URL" linkTerm="https://zbmath.org/7351023" linkWindow="_blank">https://zbmath.org/7351023</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.dedup.wf.002..04bff1e003c94574e35b64ec7c186112
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.dedup.wf.002..04bff1e003c94574e35b64ec7c186112
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: length of polynomials
        Type: general
      – SubjectFull: Linear programming
        Type: general
      – SubjectFull: auxiliary functions
        Type: general
      – SubjectFull: Polynomials in number theory
        Type: general
      – SubjectFull: [MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
        Type: general
    Titles:
      – TitleFull: Totally positive polynomials with small length
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Flammang, V.
      – PersonEntity:
          Name:
            NameFull: Sac-Epee, Jean-Marc
      – PersonEntity:
          Name:
            NameFull: Sac-Epee, Jean-Marc
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2019
          Identifiers:
            – Type: issn-locals
              Value: edsair
            – Type: issn-locals
              Value: edsairFT
ResultId 1