Academic Journal

A new conservative finite difference scheme for an initial-boundary value problem of a nonlinear Klein-Gordon equation

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: A new conservative finite difference scheme for an initial-boundary value problem of a nonlinear Klein-Gordon equation
Συγγραφείς: Zhang, Luming, Chang, Qianshun
Στοιχεία εκδότη: Chinese Academy of Sciences, Institute of Applied Mathematics, Beijing
Θεματικοί όροι: energy conservation, long time solutions, numerical examples, convergence, Finite difference methods for initial value and initial-boundary value problems involving PDEs, stability, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, finite difference scheme, PDEs in connection with quantum mechanics, nonlinear Klein-Gordon equation
Περιγραφή: Summary: A new finite difference scheme is proposed for solving an initial-boundary value problem for a nonlinear Klein-Gordon equation. The scheme has the advantage of conserving discrete energy, just as the initial-boundary value problem conserves energy. Its convergence and stability are proved. Because of the fact that the numerical scheme is fully implicit, it has a particularly important function when long time solutions are sought. The result of numerical computation shows that the new scheme is very accurate and fast.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
Σύνδεσμος πρόσβασης: https://zbmath.org/1559162
Αριθμός Καταχώρησης: edsair.c2b0b933574d..c980366a2bd29aabac0d5c83b17c76c5
Βάση Δεδομένων: OpenAIRE
Περιγραφή
Η περιγραφή δεν είναι διαθέσιμη