Λεπτομέρειες βιβλιογραφικής εγγραφής
| Τίτλος: |
A new conservative finite difference scheme for an initial-boundary value problem of a nonlinear Klein-Gordon equation |
| Συγγραφείς: |
Zhang, Luming, Chang, Qianshun |
| Στοιχεία εκδότη: |
Chinese Academy of Sciences, Institute of Applied Mathematics, Beijing |
| Θεματικοί όροι: |
energy conservation, long time solutions, numerical examples, convergence, Finite difference methods for initial value and initial-boundary value problems involving PDEs, stability, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, finite difference scheme, PDEs in connection with quantum mechanics, nonlinear Klein-Gordon equation |
| Περιγραφή: |
Summary: A new finite difference scheme is proposed for solving an initial-boundary value problem for a nonlinear Klein-Gordon equation. The scheme has the advantage of conserving discrete energy, just as the initial-boundary value problem conserves energy. Its convergence and stability are proved. Because of the fact that the numerical scheme is fully implicit, it has a particularly important function when long time solutions are sought. The result of numerical computation shows that the new scheme is very accurate and fast. |
| Τύπος εγγράφου: |
Article |
| Περιγραφή αρχείου: |
application/xml |
| Σύνδεσμος πρόσβασης: |
https://zbmath.org/1559162 |
| Αριθμός Καταχώρησης: |
edsair.c2b0b933574d..c980366a2bd29aabac0d5c83b17c76c5 |
| Βάση Δεδομένων: |
OpenAIRE |