Academic Journal
\(H_v\)-ring of fractions
| Τίτλος: | \(H_v\)-ring of fractions |
|---|---|
| Συγγραφείς: | Darafsheh, M. R., Davvaz, B. |
| Στοιχεία εκδότη: | Forum Editrice Universitaria Udinese Srl, Udine |
| Θεματικοί όροι: | strong homomorphisms, strong multiplicatively closed subsets, hyperstructures, hyperrings, fundamental structures, Generalizations, commutative hyperrings, Hypergroups, \(H_v\)-rings, \(H_v\)-rings of fractions |
| Περιγραφή: | The paper deals with a special class of algebraic structures, more general than the hyperstructures, called \(H_v\)-structures. The notions of hyperring and \(H_v\)-ring are used. More precisely, the definition of strong multiplicatively closed subset \(S\) of a commutative hyperring \((R,+,\cdot)\), is introduced. Therefore, given a commutative hyperring \(R\) with a scalar unit, the \(H_v\)-ring of fractions \((S^{-1}R,\oplus,\otimes)\) is defined. Some results concerning this \(H_v\)-ring \(S^{-1}R\) using strong homomorphisms and \(H_v\)-ideals are proved. These results are transferred to the corresponding fundamental structures. |
| Τύπος εγγράφου: | Article |
| Περιγραφή αρχείου: | application/xml |
| Σύνδεσμος πρόσβασης: | https://zbmath.org/1418057 |
| Αριθμός Καταχώρησης: | edsair.c2b0b933574d..a0c4d43e9e9c3c347f480dcc5d944d49 |
| Βάση Δεδομένων: | OpenAIRE |
| FullText | Text: Availability: 0 |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.c2b0b933574d..a0c4d43e9e9c3c347f480dcc5d944d49 RelevancyScore: 685 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 685 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: \(H_v\)-ring of fractions – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Darafsheh%2C+M%2E+R%2E%22">Darafsheh, M. R.</searchLink><br /><searchLink fieldCode="AR" term="%22Davvaz%2C+B%2E%22">Davvaz, B.</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: Forum Editrice Universitaria Udinese Srl, Udine – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22strong+homomorphisms%22">strong homomorphisms</searchLink><br /><searchLink fieldCode="DE" term="%22strong+multiplicatively+closed+subsets%22">strong multiplicatively closed subsets</searchLink><br /><searchLink fieldCode="DE" term="%22hyperstructures%22">hyperstructures</searchLink><br /><searchLink fieldCode="DE" term="%22hyperrings%22">hyperrings</searchLink><br /><searchLink fieldCode="DE" term="%22fundamental+structures%22">fundamental structures</searchLink><br /><searchLink fieldCode="DE" term="%22Generalizations%22">Generalizations</searchLink><br /><searchLink fieldCode="DE" term="%22commutative+hyperrings%22">commutative hyperrings</searchLink><br /><searchLink fieldCode="DE" term="%22Hypergroups%22">Hypergroups</searchLink><br /><searchLink fieldCode="DE" term="%22%5C%28H%5Fv%5C%29-rings%22">\(H_v\)-rings</searchLink><br /><searchLink fieldCode="DE" term="%22%5C%28H%5Fv%5C%29-rings+of+fractions%22">\(H_v\)-rings of fractions</searchLink> – Name: Abstract Label: Description Group: Ab Data: The paper deals with a special class of algebraic structures, more general than the hyperstructures, called \(H_v\)-structures. The notions of hyperring and \(H_v\)-ring are used. More precisely, the definition of strong multiplicatively closed subset \(S\) of a commutative hyperring \((R,+,\cdot)\), is introduced. Therefore, given a commutative hyperring \(R\) with a scalar unit, the \(H_v\)-ring of fractions \((S^{-1}R,\oplus,\otimes)\) is defined. Some results concerning this \(H_v\)-ring \(S^{-1}R\) using strong homomorphisms and \(H_v\)-ideals are proved. These results are transferred to the corresponding fundamental structures. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article – Name: Format Label: File Description Group: SrcInfo Data: application/xml – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://zbmath.org/1418057" linkWindow="_blank">https://zbmath.org/1418057</link> – Name: AN Label: Accession Number Group: ID Data: edsair.c2b0b933574d..a0c4d43e9e9c3c347f480dcc5d944d49 |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.c2b0b933574d..a0c4d43e9e9c3c347f480dcc5d944d49 |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: Undetermined Subjects: – SubjectFull: strong homomorphisms Type: general – SubjectFull: strong multiplicatively closed subsets Type: general – SubjectFull: hyperstructures Type: general – SubjectFull: hyperrings Type: general – SubjectFull: fundamental structures Type: general – SubjectFull: Generalizations Type: general – SubjectFull: commutative hyperrings Type: general – SubjectFull: Hypergroups Type: general – SubjectFull: \(H_v\)-rings Type: general – SubjectFull: \(H_v\)-rings of fractions Type: general Titles: – TitleFull: \(H_v\)-ring of fractions Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Darafsheh, M. R. – PersonEntity: Name: NameFull: Davvaz, B. IsPartOfRelationships: – BibEntity: Identifiers: – Type: issn-locals Value: edsair |
| ResultId | 1 |