Academic Journal

\(H_v\)-ring of fractions

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: \(H_v\)-ring of fractions
Συγγραφείς: Darafsheh, M. R., Davvaz, B.
Στοιχεία εκδότη: Forum Editrice Universitaria Udinese Srl, Udine
Θεματικοί όροι: strong homomorphisms, strong multiplicatively closed subsets, hyperstructures, hyperrings, fundamental structures, Generalizations, commutative hyperrings, Hypergroups, \(H_v\)-rings, \(H_v\)-rings of fractions
Περιγραφή: The paper deals with a special class of algebraic structures, more general than the hyperstructures, called \(H_v\)-structures. The notions of hyperring and \(H_v\)-ring are used. More precisely, the definition of strong multiplicatively closed subset \(S\) of a commutative hyperring \((R,+,\cdot)\), is introduced. Therefore, given a commutative hyperring \(R\) with a scalar unit, the \(H_v\)-ring of fractions \((S^{-1}R,\oplus,\otimes)\) is defined. Some results concerning this \(H_v\)-ring \(S^{-1}R\) using strong homomorphisms and \(H_v\)-ideals are proved. These results are transferred to the corresponding fundamental structures.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
Σύνδεσμος πρόσβασης: https://zbmath.org/1418057
Αριθμός Καταχώρησης: edsair.c2b0b933574d..a0c4d43e9e9c3c347f480dcc5d944d49
Βάση Δεδομένων: OpenAIRE
FullText Text:
  Availability: 0
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.c2b0b933574d..a0c4d43e9e9c3c347f480dcc5d944d49
RelevancyScore: 685
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 685
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: \(H_v\)-ring of fractions
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Darafsheh%2C+M%2E+R%2E%22">Darafsheh, M. R.</searchLink><br /><searchLink fieldCode="AR" term="%22Davvaz%2C+B%2E%22">Davvaz, B.</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Forum Editrice Universitaria Udinese Srl, Udine
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22strong+homomorphisms%22">strong homomorphisms</searchLink><br /><searchLink fieldCode="DE" term="%22strong+multiplicatively+closed+subsets%22">strong multiplicatively closed subsets</searchLink><br /><searchLink fieldCode="DE" term="%22hyperstructures%22">hyperstructures</searchLink><br /><searchLink fieldCode="DE" term="%22hyperrings%22">hyperrings</searchLink><br /><searchLink fieldCode="DE" term="%22fundamental+structures%22">fundamental structures</searchLink><br /><searchLink fieldCode="DE" term="%22Generalizations%22">Generalizations</searchLink><br /><searchLink fieldCode="DE" term="%22commutative+hyperrings%22">commutative hyperrings</searchLink><br /><searchLink fieldCode="DE" term="%22Hypergroups%22">Hypergroups</searchLink><br /><searchLink fieldCode="DE" term="%22%5C%28H%5Fv%5C%29-rings%22">\(H_v\)-rings</searchLink><br /><searchLink fieldCode="DE" term="%22%5C%28H%5Fv%5C%29-rings+of+fractions%22">\(H_v\)-rings of fractions</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The paper deals with a special class of algebraic structures, more general than the hyperstructures, called \(H_v\)-structures. The notions of hyperring and \(H_v\)-ring are used. More precisely, the definition of strong multiplicatively closed subset \(S\) of a commutative hyperring \((R,+,\cdot)\), is introduced. Therefore, given a commutative hyperring \(R\) with a scalar unit, the \(H_v\)-ring of fractions \((S^{-1}R,\oplus,\otimes)\) is defined. Some results concerning this \(H_v\)-ring \(S^{-1}R\) using strong homomorphisms and \(H_v\)-ideals are proved. These results are transferred to the corresponding fundamental structures.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/xml
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://zbmath.org/1418057" linkWindow="_blank">https://zbmath.org/1418057</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.c2b0b933574d..a0c4d43e9e9c3c347f480dcc5d944d49
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.c2b0b933574d..a0c4d43e9e9c3c347f480dcc5d944d49
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: Undetermined
    Subjects:
      – SubjectFull: strong homomorphisms
        Type: general
      – SubjectFull: strong multiplicatively closed subsets
        Type: general
      – SubjectFull: hyperstructures
        Type: general
      – SubjectFull: hyperrings
        Type: general
      – SubjectFull: fundamental structures
        Type: general
      – SubjectFull: Generalizations
        Type: general
      – SubjectFull: commutative hyperrings
        Type: general
      – SubjectFull: Hypergroups
        Type: general
      – SubjectFull: \(H_v\)-rings
        Type: general
      – SubjectFull: \(H_v\)-rings of fractions
        Type: general
    Titles:
      – TitleFull: \(H_v\)-ring of fractions
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Darafsheh, M. R.
      – PersonEntity:
          Name:
            NameFull: Davvaz, B.
    IsPartOfRelationships:
      – BibEntity:
          Identifiers:
            – Type: issn-locals
              Value: edsair
ResultId 1