Academic Journal

On a problem concerning the relation between shortest irreducible and minimal disjunctive normal forms of Boolean functions

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: On a problem concerning the relation between shortest irreducible and minimal disjunctive normal forms of Boolean functions
Συγγραφείς: Ušćumlić, M. P.
Στοιχεία εκδότη: Mathematical Society of Serbia (Društvo Matematičara Srbije), Belgrade
Θεματικοί όροι: Switching theory, application of Boolean algebra, Boolean functions
Περιγραφή: Summary: Lemma 6 from the paper of \textit{Ling Hsianglüan} in Probl. Kibern. 18, 11-44 (1967) is proved in a more general way by means of directly determining the minimal disjunctive normal form of the adequate Boolean function. Apart from that, it is explicitly shown that for the mentioned function, \(A_ m(f)\subset A_{nn}(f)\) holds, where \(A_ m(f)\) is the family of minimal disjunctive normal forms and \(A_{nn}(f)\) is the family of the shortest irreducible disjunctive normal forms.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
Σύνδεσμος πρόσβασης: https://zbmath.org/3954820
Αριθμός Καταχώρησης: edsair.c2b0b933574d..727a3d3f9eb9ea80776dfd976f9031de
Βάση Δεδομένων: OpenAIRE
Περιγραφή
Η περιγραφή δεν είναι διαθέσιμη