Academic Journal

Über \(\lambda\)-Ringstrukturen auf dem Burnside-Ring

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Über \(\lambda\)-Ringstrukturen auf dem Burnside-Ring
Συγγραφείς: tom Dieck, Tammo
Στοιχεία εκδότη: Springer, Berlin/Heidelberg
Θεματικοί όροι: Ordinary representations and characters, integer valued functions, Finite nilpotent groups, \(p\)-groups, Burnside ring, Finite transformation groups, \(K\)-theory operations and generalized cohomology operations in algebraic topology, special \(\lambda \) -ring, p-group, \(\psi \) -structure, conjugacy classes
Περιγραφή: The author proves: For a \(\psi^ p\)-group G the \(\psi\)-structure on the Burnside ring A(G) of G, which is defined below, induces \(\lambda^ i\)- operators that make A(G) a special \(\lambda\)-ring. Here the \(\psi^ p\)- group G is a p-group satisfying: \(H(1)=\{g^ p:\) \(g\in H\}\) as well as \(H(-1)=\{g:\) \(g^ p\in H\}\) are subgroups of G for every \(H\leq G\). Considering A(G) as part of the ring of all integer valued functions f on the conjugacy classes (H) of subgroups H of G, one defines the \(\psi\)- structure by \(\psi^ pf(H)=f(H(1))\), \(\psi^ kf=f\), when \(p\dag k\), and \(\psi^ k\psi^{\ell}=\psi^{k\ell}\). The proof has very nice identities of (p-adic) power series.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
DOI: 10.1007/bf01174185
Σύνδεσμος πρόσβασης: https://zbmath.org/3884361
Αριθμός Καταχώρησης: edsair.c2b0b933574d..40f5b4979c0a15ac66f7204217c906f7
Βάση Δεδομένων: OpenAIRE
FullText Text:
  Availability: 0
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.c2b0b933574d..40f5b4979c0a15ac66f7204217c906f7
RelevancyScore: 685
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 685
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Über \(\lambda\)-Ringstrukturen auf dem Burnside-Ring
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22tom+Dieck%2C+Tammo%22">tom Dieck, Tammo</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Springer, Berlin/Heidelberg
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Ordinary+representations+and+characters%22">Ordinary representations and characters</searchLink><br /><searchLink fieldCode="DE" term="%22integer+valued+functions%22">integer valued functions</searchLink><br /><searchLink fieldCode="DE" term="%22Finite+nilpotent+groups%2C+%5C%28p%5C%29-groups%22">Finite nilpotent groups, \(p\)-groups</searchLink><br /><searchLink fieldCode="DE" term="%22Burnside+ring%22">Burnside ring</searchLink><br /><searchLink fieldCode="DE" term="%22Finite+transformation+groups%22">Finite transformation groups</searchLink><br /><searchLink fieldCode="DE" term="%22%5C%28K%5C%29-theory+operations+and+generalized+cohomology+operations+in+algebraic+topology%22">\(K\)-theory operations and generalized cohomology operations in algebraic topology</searchLink><br /><searchLink fieldCode="DE" term="%22special+%5C%28%5Clambda+%5C%29+-ring%22">special \(\lambda \) -ring</searchLink><br /><searchLink fieldCode="DE" term="%22p-group%22">p-group</searchLink><br /><searchLink fieldCode="DE" term="%22%5C%28%5Cpsi+%5C%29+-structure%22">\(\psi \) -structure</searchLink><br /><searchLink fieldCode="DE" term="%22conjugacy+classes%22">conjugacy classes</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The author proves: For a \(\psi^ p\)-group G the \(\psi\)-structure on the Burnside ring A(G) of G, which is defined below, induces \(\lambda^ i\)- operators that make A(G) a special \(\lambda\)-ring. Here the \(\psi^ p\)- group G is a p-group satisfying: \(H(1)=\{g^ p:\) \(g\in H\}\) as well as \(H(-1)=\{g:\) \(g^ p\in H\}\) are subgroups of G for every \(H\leq G\). Considering A(G) as part of the ring of all integer valued functions f on the conjugacy classes (H) of subgroups H of G, one defines the \(\psi\)- structure by \(\psi^ pf(H)=f(H(1))\), \(\psi^ kf=f\), when \(p\dag k\), and \(\psi^ k\psi^{\ell}=\psi^{k\ell}\). The proof has very nice identities of (p-adic) power series.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/xml
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/bf01174185
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://zbmath.org/3884361" linkWindow="_blank">https://zbmath.org/3884361</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.c2b0b933574d..40f5b4979c0a15ac66f7204217c906f7
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.c2b0b933574d..40f5b4979c0a15ac66f7204217c906f7
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/bf01174185
    Languages:
      – Text: Undetermined
    Subjects:
      – SubjectFull: Ordinary representations and characters
        Type: general
      – SubjectFull: integer valued functions
        Type: general
      – SubjectFull: Finite nilpotent groups, \(p\)-groups
        Type: general
      – SubjectFull: Burnside ring
        Type: general
      – SubjectFull: Finite transformation groups
        Type: general
      – SubjectFull: \(K\)-theory operations and generalized cohomology operations in algebraic topology
        Type: general
      – SubjectFull: special \(\lambda \) -ring
        Type: general
      – SubjectFull: p-group
        Type: general
      – SubjectFull: \(\psi \) -structure
        Type: general
      – SubjectFull: conjugacy classes
        Type: general
    Titles:
      – TitleFull: Über \(\lambda\)-Ringstrukturen auf dem Burnside-Ring
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: tom Dieck, Tammo
    IsPartOfRelationships:
      – BibEntity:
          Identifiers:
            – Type: issn-locals
              Value: edsair
ResultId 1