Academic Journal

Existence and energy decay of the solutions for a nonlinear thermoviscoelastic model with a variable exponent

Λεπτομέρειες βιβλιογραφικής εγγραφής
Τίτλος: Existence and energy decay of the solutions for a nonlinear thermoviscoelastic model with a variable exponent
Συγγραφείς: Dilmi, Mohamed, Benallia, Mohamed
Στοιχεία εκδότη: Kyungpook National University, Department of Mathematics, Taegu
Θεματικοί όροι: nonlinear variable exponent sources, variable exponent Lebesgue and Sobolev spaces, Initial-boundary value problems for systems of nonlinear higher-order PDEs, Faedo-Galerkin method, PDEs in connection with mechanics of deformable solids, energy decay, Stability in context of PDEs
Περιγραφή: Summary: In this paper, we deal with a three-dimensional model for thermoviscoelastic system with nonlinear variable exponent sources in a dynamic regime. We prove the existence of weak solutions using the Faedo-Galerkin method, and then study the energy decay of the solutions.
Τύπος εγγράφου: Article
Περιγραφή αρχείου: application/xml
DOI: 10.5666/kmj.2025.65.1.87
Σύνδεσμος πρόσβασης: https://zbmath.org/8029067
Αριθμός Καταχώρησης: edsair.c2b0b933574d..215544eede2cc3952bc9a8c39dab5948
Βάση Δεδομένων: OpenAIRE