Academic Journal
On an upper bound for biquadratic Weyl sums
| Title: | On an upper bound for biquadratic Weyl sums |
|---|---|
| Authors: | Deshouillers, Jean-Marc |
| Publisher Information: | Scuola Normale Superiore, Pisa |
| Subject Terms: | estimation of sums over multiplicative functions in residue classes, Hardy-Littlewood method, Waring problem for biquadrates, Asymptotic results on arithmetic functions, Waring's problem and variants, Estimates on exponential sums, estimates of exponential sums with explicit constants |
| Description: | In order to solve the Waring problem for biquadrates \((g(4)=19)\) it is unavoidable to apply the Hardy-Littlewood method with explicit \(O\)- constants in the error terms. In the paper under review the author proves an explicit estimation for the exponential sum \[ S_ \varepsilon= \sum_{P-{1\over 2}\varepsilon10^{80}\), \(0 |
| Document Type: | Article |
| File Description: | application/xml |
| Access URL: | https://zbmath.org/165239 |
| Accession Number: | edsair.c2b0b933574d..0f0861d63daccda7b2abc3b37b5c24e8 |
| Database: | OpenAIRE |
| FullText | Text: Availability: 0 |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.c2b0b933574d..0f0861d63daccda7b2abc3b37b5c24e8 RelevancyScore: 685 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 685 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: On an upper bound for biquadratic Weyl sums – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Deshouillers%2C+Jean-Marc%22">Deshouillers, Jean-Marc</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: Scuola Normale Superiore, Pisa – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22estimation+of+sums+over+multiplicative+functions+in+residue+classes%22">estimation of sums over multiplicative functions in residue classes</searchLink><br /><searchLink fieldCode="DE" term="%22Hardy-Littlewood+method%22">Hardy-Littlewood method</searchLink><br /><searchLink fieldCode="DE" term="%22Waring+problem+for+biquadrates%22">Waring problem for biquadrates</searchLink><br /><searchLink fieldCode="DE" term="%22Asymptotic+results+on+arithmetic+functions%22">Asymptotic results on arithmetic functions</searchLink><br /><searchLink fieldCode="DE" term="%22Waring's+problem+and+variants%22">Waring's problem and variants</searchLink><br /><searchLink fieldCode="DE" term="%22Estimates+on+exponential+sums%22">Estimates on exponential sums</searchLink><br /><searchLink fieldCode="DE" term="%22estimates+of+exponential+sums+with+explicit+constants%22">estimates of exponential sums with explicit constants</searchLink> – Name: Abstract Label: Description Group: Ab Data: In order to solve the Waring problem for biquadrates \((g(4)=19)\) it is unavoidable to apply the Hardy-Littlewood method with explicit \(O\)- constants in the error terms. In the paper under review the author proves an explicit estimation for the exponential sum \[ S_ \varepsilon= \sum_{P-{1\over 2}\varepsilon10^{80}\), \(0 – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article – Name: Format Label: File Description Group: SrcInfo Data: application/xml – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://zbmath.org/165239" linkWindow="_blank">https://zbmath.org/165239</link> – Name: AN Label: Accession Number Group: ID Data: edsair.c2b0b933574d..0f0861d63daccda7b2abc3b37b5c24e8 |
| PLink | https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.c2b0b933574d..0f0861d63daccda7b2abc3b37b5c24e8 |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: Undetermined Subjects: – SubjectFull: estimation of sums over multiplicative functions in residue classes Type: general – SubjectFull: Hardy-Littlewood method Type: general – SubjectFull: Waring problem for biquadrates Type: general – SubjectFull: Asymptotic results on arithmetic functions Type: general – SubjectFull: Waring's problem and variants Type: general – SubjectFull: Estimates on exponential sums Type: general – SubjectFull: estimates of exponential sums with explicit constants Type: general Titles: – TitleFull: On an upper bound for biquadratic Weyl sums Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Deshouillers, Jean-Marc IsPartOfRelationships: – BibEntity: Identifiers: – Type: issn-locals Value: edsair |
| ResultId | 1 |