Showing 1 - 20 results of 141 for search '"l-карнитин"', query time: 0.88s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Andrology and Genital Surgery; Том 24, № 4 (2023); 59-66 ; Андрология и генитальная хирургия; Том 24, № 4 (2023); 59-66 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/705/550; Salonia A., Bettocchi C., Capogrosso P. et al. EAU guidelines on sexual and reproductive health. European Association of Urology, 2023.; De Ligny W., Smits R.M., Mackenzie-Proctor R. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2022;5(5):CD007411. DOI:10.1002/14651858.CD007411.pub5; Minhas S., Bettocchi C., Boeri L. et al. European Association of Urology guidelines on male sexual and reproductive health: 2021 update on male infertility. Eur Urol 2021;80(5):603–20. DOI:10.1016/j.cururo.2021.08.014; Wright C., Milne S., Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online 2014;28(6):684–703. DOI:10.1016/j.rbmo.2014.02.004; Fraczek M., Kurpisz M. [The redox system in human semen and peroxidative damage of spermatozoa (In Polish)]. Postepy Hig Med Dosw (Online) 2005;59:523–34.; Plante M., De Lamirande E., Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 1994;62(2):387–93. DOI:10.1016/s0015-0282(16)56895-2; Henkel R.R. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl 2011;13(1):43–52. DOI:10.1038/aja.2010.76; Martins da Silva S.J. Male infertility and antioxidants: one small step for man, no giant leap for andrology? Reprod Biomed Online 2019;39(6):879–83. DOI:10.1016/j.rbmo.2019.08.008; Majzoub A., Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol 2018;16(1):113–24. DOI:10.1016/j.aju.2017.11.013; Simon L., Zini A., Dyachenko A. et al. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 2017;19(1):80–90. DOI:10.4103/1008-682X.182822; Henkel R., Morris A., Vogiatzi P. et al. Predictive value of seminal oxidation-reduction potential analysis for reproductive outcomes of ICSI. Reprod Biomed Online 2022;45(5):1007–20. DOI:10.1016/j.rbmo.2022.05.010; Hervás I., Pacheco A., Gil Julia M. et al. Sperm deoxyribonucleic acid fragmentation (by terminal deoxynucleotidyl transferase biotin dUTP nick end labeling assay) does not impair reproductive success measured as cumulative live birth rates per donor metaphase II oocyte used. Fertil Steril 2022;118(1):79–89. DOI:10.1016/j.fertnstert.2022.04.002; Наумов Н.П., Щеплев П.А., Полозов В.В. Роль антиоксидантов в профилактике мужского бесплодия. Андрология и генитальная хирургия 2019; 20(1):22–9. DOI:10.17650/2070-9781-2019-20-1-22-29; Корнеев И.А. Мужское бесплодие при оксидативном стрессе: пути решения проблемы. Урология 2022;1:102–8. DOI:10.18565/urology.2022.1.102-108; Yan L., Liu J., Wu S. et al. Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymor-phism. J Assist Reprod Genet 2014;31(5):549–54. DOI:10.1007/s10815-014-0215-2; Macanovic B., Vucetic M., Jankovic A. et al. Correlation between sperm parameters and protein expression of antioxidative defense enzymes in seminal plasma: a pilot study. Dis Markers 2015;2015:436236. DOI:10.1155/2015/436236; Gałecka E., Jacewicz R., Mrowicka M. et al. [Antioxidative enzymes – structure, properties, functions (In Polish)]. Pol Merkur Lekarski 2008;25(147):266–8.; Yeung C.H., Cooper T.G., De Geyter M. et al. Studies on the origin of redox enzymes in seminal plasma and their relationship with results of in vitro fertilization. Mol Hum Reprod 1998;4(9):835–9. DOI:10.1093/molehr/4.9.835; Crisol L., Matorras R., Aspichueta F. et al. Glutathione peroxidase activity in seminal plasma and its relationship to classical sperm parameters and in vitro fertilization intracytoplasmic sperm injection outcome. Fertil Steril 2012;97(4):852–7. DOI:10.1016/j.fertnstert.2012.01.097; Гамидов С.И., Шатылко Т.В., Ли К.И., Гасанов Н.Г. Роль антиоксидантных молекул в терапии мужского бесплодия и подготовке мужчины к зачатию ребенка. Медицинский совет 2020;(3):122–9. DOI:10.21518/2079-701X2020-3-122-129; Walczak-Jedrzejowska R., Wolski J.К., Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertilityю. Cent European J Urol 2013;66(1):60–7. DOI:10.5173/ceju.2013.01.art19; Li X., Long X.Y., Xie Y.J. et al. The roles of retinoic acid in the differentiation of spermatogonia and spermatogenic disorders. Clin Chim Acta 2019;497:54–60. DOI:10.1016/j.cca.2019.07.013; Yang Y., Luo J., Yu D. et al. Vitamin A promotes Leydig cell differentiation via alcohol dehydrogenase 1. Front Endocrinol (Lausanne) 2018;9:644. DOI:10.3389/fendo.2018.00644.; Zhou Y., Zhang D., Hu D. et al Retinoic acid: a potential therapeutic agent for cryptorchidism infertility based on investigation of flutamide-induced cryptorchid rats in vivo and in vitro. Reprod Toxicol 2019;87:108–17. DOI:10.1016/j.reprotox.2019.05.063; Comhaire F. The role of food supplementation in the treatment of the infertile couple and for assisted reproduction. Andrologia 2010;42(5):331–40. DOI:10.1111/j.1439-0272.2009.01025.x; Colagar A.Н., Marzony E.T. Ascorbic acid in human seminal plasma: determination and its relationship to sperm quality. J Clin Biochem Nutr 2009;45(2):144–9. DOI:10.3164/jcbn.08-251; Song G.J., Norkus E.P., Lewis V. Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl 2006;29(6):569–75. DOI:10.1111/j.1365-2605.2006.00700.x; Lanzafame F.M., La Vignera S., Vicari E., Calogero A.E. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online 2009;19(5):638–59. DOI:10.1016/j.rbmo.2009.09.014; Hambidge K.M., Krebs N.F. Zinc deficiency: a special challenge. J Nutr 2007;137(4):1101–5. DOI:10.1093/jn/137.4.1101; Omu A.E., Al-Azemi M.K., Al-Maghrebi M. et al. Molecular basis for the effects of zinc deficiency on spermatogenesis: an experimental study in the Sprague-Dawley rat model. Indian J Urol 2015;31(1):57–64. DOI:10.4103/0970-1591.139570; Giahi L., Mohammadmoradi S., Javidan A., Sadeghi M.R. Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev 2016;74(2):118–30. DOI:10.1093/nutrit/nuv059; Zhao J., Dong X., Hu X. et al. Zinc levels in seminal plasma and their correlation with male infertility: a systematic review and meta-analysis. Sci Rep 2016;6:22386. DOI:10.1038/srep22386; Atig F., Raffa M., Ali H.B. et al. Altered antioxidant status and increased lipid per-oxidation in seminal plasma of tunisian infertile men. Int J Biol Sci 2012;8(1):139–49. DOI:10.7150/ijbs.8.139; Flohé L. Selenium in mammalian spermiogenesis. Biol Chem 2007;388(10):987–95. DOI:10.1515/BC.2007.112; Mossa M.M., Azzawi M.H., Dekhel H.H. et al. Effect of selenium in treatment of male infertility. Exp Tech Urol Nephrol 2018;1(5): ETUN.000521. DOI:10.31031/ETUN.2018.01.000521; Ma L. , Sun Y. Comparison of L-Carnitine vs. Coq10 and Vitamin E for idiopathic male infertility: a randomized controlled trial. Randomized Controlled Trial. Eur Rev Med Pharmacol Sci 2022;26(13):4698–704. DOI:10.26355/eurrev_202207_29194; Gvozdjáková A., Kucharská J., Dubravicky J. et al. Coenzyme Q10, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. Dis Markers 2015;2015:827941. DOI:10.1155/2015/827941; Safarinejad M.R. The effect of coenzyme Q10 supplementation on partner pregnancy rate in infertile men with idiopathic oligoasthenoteratozoospermia: an open-label prospective study. Int Urol Nephrol 2012;44(3):689–700. DOI:10.1007/s11255-011-0081-0; Nadjarzadeh A., Shidfar F., Amirjannati N. et al. Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: a double-blind randomised clinical trial. Andrologia 2014;46(2):177–83. DOI:10.1111/and.12062; Lafuente R., González-Comadrán M., Solà I. et al. Coenzyme Q10 and male infertility: a meta-analysis. J Assist Reprod Genet 2013;30(9):1147–56. DOI:10.1007/s10815-013-0047-5; Ciftci H., Verit A., Savas M. et al. Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant status. Urology 2009;74(1):73–6. DOI:10.1016/j.urology.2009.02.034; Lenzi A., Picardo M., Gandini L. et al. Glutathione treatment of dyspermia: effect on the lipoperoxidation process. Hum Reprod 1994;9(11):2044–50. DOI:10.1093/oxfordjournals.humrep.a138391; Schisterman E.F., Sjaarda L.A., Clemons T. et al. Effect of folic acid and Zinc supplementation in men on semen quality and live birth among couples undergoing infertility treatment: a randomized clinical trial. JAMA 2020;323(1):35–48. DOI:10.1001/jama.2019.18714; Ozer Kaya S., Kandemir F.M., Gur S. et al. Evaluation of the role of L-arginine on spermatological parameters, seminal plasma nitric oxide levels and arginase enzyme activities in rams. Andrologia 2020;52(1):e13439. DOI:10.1111/and.13439; Comhaire F., Christophe A., Zalata A. et al. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids 2000;63(3):159–65. DOI:10.1054/plef.2000.0174; Martínez-Soto J.C., Domingo J.C., Cordobilla B. et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med 2016;62(6):387–95. DOI:10.1080/19396368.2016.1246623; Виноградов И.В., Живулько А.Р. Докозагексаеновая кислота в лечении мужского бесплодия, вызванного высоким уровнем фрагментации ДНК сперматозоидов. Андрология и генитальная хирургия 2020;21(4):89–97. DOI:10.17650/2070-9781-2020-21-4-89-97; Steiner A.Z., Hansen K.R., Barnhart K.T. et al. The effect of antioxidants on male factor infertility: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil Steril 2020;113(3): 552–60.e3. DOI:10.1016/j.fertnstert.2019.11.008; Kuchakulla M., Ramasamy R. Re: The effect of antioxidants on male factor infertility: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Eur Urol 2021;79(1):159–60. DOI:10.1016/j.eururo.2020.08.008; Li K., Yang X., Wu T. The effect of antioxidants on sperm quality parameters and pregnancy rates for idiopathic male infertility: a network meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2022;13:810242 DOI:10.3389/fendo.2022.810242; Гамидов С.И., Попова А.Ю., Гасанов Н.Г. и др. Оценка влияния комплекса «БЕСТФертил» на показатели спермограммы, оксидативного стресса и фрагментации ДНК сперматозоидов у мужчин с бесплодием. Андрология и генитальная хирургия 2019;20(1):91–8. DOI:10.17650/2070-9781-2019-20-1-91-98; Кореньков Д.Г., Павлов А.Л., Казимзаде Э.Д. Влияние препарата БЕСТФертил на репродуктивную функцию у мужчин с идиопатическим бесплодием. Андрология и генитальная хирургия 2018;19(4):54–9. DOI:10.17650/2070-9781-2018-19-4-54-59; Smits R.M., Mackenzie-Proctor R., Yazdani A. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2019;3(3):CD007411. DOI:10.1002/14651858.CD007411.pub4; https://agx.abvpress.ru/jour/article/view/705

  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Лекарства Украины; № 2-3(258-259) (2022); 25-30
    Medicine of Ukraine; No. 2-3(258-259) (2022); 25-30
    Ліки України; № 2-3(258-259) (2022); 25-30

    File Description: application/pdf

  7. 7
    Academic Journal

    Source: Andrology and Genital Surgery; Том 23, № 3 (2022); 102-108 ; Андрология и генитальная хирургия; Том 23, № 3 (2022); 102-108 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/590/478; Урология. Российские клинические рекомендации. Под ред. Ю.Г. Аляева, П.В. Глыбочко, Д.Ю. Пушкаря. М.: ГЭОТАРМедиа, 2016. 496 с.; Chung E., Ralph D., Kagioglu A. et al. Evidence-based management guidelines on Peyronie’s disease. J Sex Med 2016;13(6):905–23. DOI:10.1016/j.jsxm.2016.04.062; Жуков О.Б., Васильев А.Э., Новиков М.Е. Повышение эффективности консервативной терапии болезни Пейрони. Андрология и генитальная хирургия 2018;19(4):78–84. DOI:10.17650/2070-9781-2018-19-4-78-84; Zargooshi J. Trauma as the cause of Peyronie’s disease: penile fracture as a model of trauma. J Urol 2004;172(1):186–8. DOI:10.1097/01.ju.0000132144.71458.86; Moreland R.B., Nehra A. Pathophysiology of Peyronie’s disease. Int J Impot Res 2002;14(5):406–10. DOI:10.1016/j.aju.2013.06.006; Nehra A., Alterowitz R., Culkin D.J. et al. Peyronie’s disease: AUA guideline. J Urol 2015;194(3):745–53. DOI:10.1016/j.juro.2015.05.098; Stuntz M., Perlaky A., des Vignes F. et al. The prevalence of Peyronie’s disease in the United States: a population-based study. PLoS One 2016;11(2):e0150157. DOI:10.1371/journal.pone.0150157; Kotov S.V., Yusufov A.G. Penilecorporoplasty using buccal mucosa graft: incision and grafting (surgical technique). Andrologiya i genital’naya khirurgiya = Andrology and Genital Surgery 2016;17(4):68–71. (In Russ). DOI:10.17650/2070-9781-2016-17-4-68-71; Гамидов С.И., Попков В.М., Шатылко Т.В. и др. Отдаленные результаты корпоропластики при болезни Пейрони. Андрология и генитальная хирургия 2018;19(4):39–45. DOI:10.17650/2070-9781-2018-19-4-39-45; Fojecki G.L., Tiessen S., Osther P.J.S. Extracorporeal shock wave therapy (ESWT) in urology: a systematic review of outcome in Peyronie’s disease, erectile dysfunction and chronic pelvic pain. World J Urol 2017;35(1):1–9. DOI:10.1007/s00345-016-1834-2; Gao L., Qian S., Tang Z. et al. A meta-analysis of extracorporeal shock wave therapy for Peyronie’s disease. Int J Impot Res 2016;28(5):161–6. DOI:10.1038/ijir.2016.24; Fode M., Hatzichristodoulou G., Serefoglu E.C. et al. Low-intensity shockwave therapy for erectile dysfunction: is the evidence strong enough? Nat Rev Urol 2017;14(10):593–606. DOI:10.1038/nrurol.2017.119; Inal T., Tokatli Z., Akand M. et al. Effect of intralesional interferon-alpha 2b combined with oral vitamin E for treatment of early stage Peyronie’s disease: a randomized and prospective study. Urology 2006;67(5):1038–42. DOI:10.1016/j.urology.2005.11.005; Safarinejad M.R. Therapeutic effects of colchicine in the management of Peyronie’s disease: a randomized double-blind, placebo-controlled study. Int J Impot Res 2004;16(3):238–43. DOI:10.1038/sj.ijir.3901185; Rehman J., Benet A., Melman A. Use of intralesional verapamil to dissolve Peyronie’s disease plaque: a long-term single-blind study. Urology 1998;51(4):620–6. DOI:10.1016/s0090-4295(97)00700-0; Hauck E.W., Bschleipfer T., Haag S. et al. [Assessment among German urologists of various conservative treatment modalities for Peyronie’s disease. Results of a survey (In German)]. Urologe A 2005;44(10):1189–6. DOI:10.1007/s00120-005-0867-8; Zarafonetis C.J., Horrax T.M. Treatment of Peyronie’s disease with potassium para-aminobenzoate (potaba). J Urol 1959;81(6):770–2. DOI:10.1016/s0022-5347(17)66108-1; Weidner W., Hauck E.W., Schnitker J. et al. Potassium paraaminobenzoate (POTABATM) in the treatment of Peyronie’s disease: a prospective, placebo-controlled, randomized study. Eur Urol 2005;47(4):530–6. DOI:10.1016/j.eururo.2004.12.022; Hasche-Klünder R. [Treatment of peyronie’s disease with paraaminobenzoacidic potassium (POTOBA) (author’s transl). (In German)]. Urologe A 1978;17(4):224–7. PMID: 308273.; Riley A. Peyronie’s disease – a report on a series of 18 patients treated with potassium para-aminobenzoate. BRJ Sex Med 1979;6:29–33.; Carson C.C. Potassium para-aminobenzoate for the treatment of Peyronie’s disease: is it effective? Tech Urol 1997;3(3):135–9. PMID: 9422444.; Scott W.W., Scardino P.L. A new concept in the treatment of Peyronie’s disease. South Med J 1948:41(2):173–7.; Chesney J. Peyronie’s disease. Br J Urol 1975;47:209–18. DOI:10.1111/j.1464-410X.1975.tb03950.x; Pryor J., Farrell C. Controlled clinical trial of vitamin E in Peyronie’s disease. Prog Reprod Biol Med 1983;9:41–5.; Safarinejad M.R., Hosseini S.Y., Kolahi A.A. Comparison of vitamin E and propionyl-L-carnitine, separately or in combination, in patients with early chronic Peyronie’s disease: a double-blind, placebo controlled, randomized study. J Urol 2007;178(4 Pt 1): 1398–403; discussion 1403. DOI:10.1016/j.juro.2007.05.162; Jiang Q., Yin X., Lill M.A. et al. Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases. Proc Natl Acad Sci U S A 2008;105(51):20464–9. DOI:10.1073/pnas.0810962106; Halal A.A., Geavlete P., Ceban E. Pharmacological therapy in patients diagnosed with Peyronie’s disease. J Med Life 2012;5(2):192–5. PMID: 22802890.; Paulis G., Brancato T., D’Ascenzo R. et al. Efficacy of vitamin E in the conservative treatment of Peyronie’s disease: legend or reality? A controlled study of 70 cases. Andrology 2013;1(1):120–8. DOI:10.1111/j.2047-2927.2012.00007.x; Biagiotti G., Cavallini G. Acetyl-L-carnitine vs tamoxifen in the oral therapy of Peyronie’s disease: a preliminary report. BJU Int 2001;88(1):63–7. DOI:10.1046/j.1464-410x.2001.02241.x; https://agx.abvpress.ru/jour/article/view/590

  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Source: Ukrainian Journal of Dermatology, Venerology, Cosmetology; No. 1 (2021); 21-25
    Украинский журнал дерматологии, венерологии, косметологии; № 1 (2021); 21-25
    Український журнал дерматології, венерології, косметології; № 1 (2021); 21-25

    File Description: application/pdf

  12. 12
  13. 13
    Academic Journal

    Source: Achievements of Clinical and Experimental Medicine; No. 1 (2019); 173-181 ; Достижения клинической и экспериментальной медицины; № 1 (2019); 173-181 ; Здобутки клінічної і експериментальної медицини; № 1 (2019); 173-181 ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2019.v0.i1

    File Description: application/pdf

  14. 14
    Academic Journal

    Source: Achievements of Clinical and Experimental Medicine; No. 4 (2016) ; Достижения клинической и экспериментальной медицины; № 4 (2016) ; Здобутки клінічної і експериментальної медицини; № 4 (2016) ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2016.v0.i4

    File Description: application/pdf

  15. 15
    Academic Journal

    Source: Achievements of Clinical and Experimental Medicine; No. 1 (2019); 117-120 ; Достижения клинической и экспериментальной медицины; № 1 (2019); 117-120 ; Здобутки клінічної і експериментальної медицини; № 1 (2019); 117-120 ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2019.v0.i1

    File Description: application/pdf

  16. 16
    Academic Journal

    Source: Bulletin of Scientific Research; No. 1 (2019); 39-44 ; Вестник научных исследований; № 1 (2019); 39-44 ; Вісник наукових досліджень; № 1 (2019); 39-44 ; 2415-8798 ; 1681-276X ; 10.11603/2415-8798.2019.1

    File Description: application/pdf

  17. 17
    Academic Journal
  18. 18
    Academic Journal

    Source: Clinical and experimental pathology; Vol. 19 No. 1 (2020) ; Клиническая и экспериментальная патология; Том 19 № 1 (2020) ; Клінічна та експериментальна патологія; Том 19 № 1 (2020) ; 2521-1153 ; 1727-4338

    File Description: application/pdf

  19. 19
  20. 20