-
1Academic Journal
Authors: M. N. Repkova, V. F. Zarytova, O. Yu. Mazurkov, N. A. Mazurkova, E. V. Makarevich, E. I. Filippova, M. D. Nekrasov, M. S. Kupryushkin, A. S. Levina, М. Н. Репкова, В. Ф. Зарытова, О. Ю. Мазурков, Н. А. Мазуркова, Е. В. Макаревич, Е. И. Филиппова, М. Д. Некрасов, М. С. Купрюшкин, А. С. Левина
Contributors: The research was funded by the Russian Science Foundation, project number 23-24-00184., Исследование выполнено при финансовой поддержке Российского научного фонда (проект №23-24-00184).
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 4 (2024); 338-345 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 4 (2024); 338-345 ; 0137-0952
Subject Terms: вирус простого герпеса, antisense oligonucleotides, TiO2 nanoparticles (anatase), antiviral effect, herpes simplex virus, антисмысловые олигонуклеотиды, TiO2-наночастицы (анатаз), противовирусный эффект
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1442/707; Belikova A.M., Zarytova V.F., Grineva N.I. Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett. 1967;8(37):3557–3562.; Zamecnik P., Stephenson M. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. U.S.A. 1978;75(1):280–284.; Amado D.A., Davidson B.L. Gene therapy for ALS: A review. Mol. Ther. 2021;29(12):3345–3358.; Kulkarni J.A., Witzigmann D., Chen S., Cullis P.R., van der Meel R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc. Chem. Res. 2019;52(9):2435–2444.; Draper K.G., Ecker D.J., Mirabelli C.K., Crooke S.T. Oligonucleotide therapies for modulating the effects of herpesviruses. Patent US 6310044 B1, 2001;30.10.2001.; Eide K., Moerdyk-Schauwecker M., Stein D.A., Bildfell R., Koelle D.M., Jin L. Reduction of herpes simplex virus type-2 replication in cell cultures and in rodent models with peptide-conjugated morpholino oligomers. Antivir. Ther. 2010;15(8):1141–1149.; Moerdyk-Schauwecker M., Stein D.A., Eide K., Blouch R.E., Bildfell R., Iversen P., Jin L. Inhibition of HSV-1 ocular infection with morpholino oligomers targeting ICP0 and ICP27. Antiviral Res. 2009;84(2):131–141.; Weng Y., Huang Q., Li C., Yang Y., Wang X., Yu J., Huang Y., Liang X.J. Improved nucleic acid therapy with advanced nanoscale biotechnology. Mol. Ther. Nucleic Acids 2020;19(1):581–601.; Haghighi F.H., Mercurio M., Cerra S., Salamone T.A., Bianymotlagh R., Palocci C., Spica V.R., Fratoddi I. Surface modification of TiO 2 nanoparticles with organic molecules and their biological applications. J. Mater. Chem. B. 2023;11(11):2334–2366.; Chelobanov B.P., Repkova M.N., Bayborodin S.I., Ryabchikova E.I., Stetsenko D.A. Nuclear delivery of oligonucleotides via nanocomposites based on TiO2 nanoparticles and polylysine. Mol. Biol. (Mosс.). 2017;51(5):797–808.; Levina A.S., Repkova M.N., Shatskaya N.V., Zarytova V.F., Ismagilov Z.R., Shikina N.V., Zagrebelnyi S.N., Baiborodin S.I. Design of TiO2~DNA nanocomposites for penetration into cells. Russ. J. Bioorg. Chem. 2013;39(1):77–86.; Zharkov T.D., Markov O.V., Zhukov S.A., Khodyreva S.N., Kupryushkin M.S. Influence of combinations of lipophilic and phosphate backbone modifications on cellular uptake of modified oligonucleotides. Molecules. 2024;29(2):452.; Osano E., Kishi J., Takahashi Y. Phagocytosis of titanium particles and necrosis in TNF-alpha-resistant mouse sarcoma L929 cells. Toxicol. In Vitro. 2003;17(1):41–47.; Smee D.F., Morrison A.C., Barnard D.L., Sidwell R.W. Comparison of colorimetric and visual methods for determining anti-influenza (H1N1 and H3N2) virus activities and toxicities of compounds. J. Virol. Methods. 2002;106(1):71–79.; Levina A.S., Repkova M.N., Bessudnova E.V., Filippova E.I., Zarytova V.F. High antiviral effect of TiO2·PL-DNA nanocomposites targeted to conservative regions of (-)RNA and (+)RNA of influenza A virus in cell culture. Beilstein J. Nanotechnol. 2016;7(4):1166–1173.; Levina A., Repkova M., Shikina N., Ismagilov Z., Kupryushkin M., Pavlova A., Mazurkova N., Pyshnyi D., Zarytova V. Pronounced therapeutic potential of oligonucleotides fixed on inorganic nanoparticles against highly pathogenic H5N1 influenza A virus in vivo. Eur. J. Pharm. Biopharm. 2021;162:92–98.; Repkova M.N., Levina A.S., Ismagilov Z R., Mazurkova N.A., Mazurkov O.Ju., Zarytova V.F. Effective inhibition of newly emerged A/H7N9 virus with oligonucleotides targeted to conserved regions of the virus genome. Nucleic Acid Ther. 2021;31(6):436–442.; Repkova M.N., Levina A.S., Seryapina A.A., Shikina N.V., Bessudnova E.V., Zarytova V.F., Markel A.L. Toward gene therapy of hypertension: experimental study on hypertensive ISIAH rats. Biochemistry (Mosc.). 2017;82(4):454–457.; Shen X., Corey D.R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46(4):1584–1600.; Levina A.S., Repkova M.N., Zarytova V.F. Therapeutic nucleic acids against Herpes simplex viruses (a review). Russ. J. Bioorg. Chem. 2023;49(6):1243–1262.; Shoji Y., Norimatsu M., Shimada J., Mizushima Y. Limited use of cationic liposomes as tools to enhance the antiherpetic activities of oligonucleotides in Vero cells infected with herpes simplex virus Type 1. Antisense Nucleic Acid Drug Dev. 1998;8(4):255–263.; Birch-Hirschfeld E., Knorre C.M., Stelzner A., Schmidtke M. Antiviral activity of antisense oligonucleotides against various targets of herpes simplex virus 1 (Hsv1) and Coxsackievirus B3 (Cvb3) genome. Nucleos. Nucleot. 1997;16(5–6):623–628.; Blumenfeld M., Meguenni S., Poddevin B., Vasseur M. Antisense oligonucleotides against herpes simplex virus types 1 and 2. Patent WO1995004141A1, 1995;09.02.1995.; Hoke G.D., Draper K., Freier S.M., Gonzalez C., Driver V.B., Zounes M.C., Ecker D.J. Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res. 1991;19(20):5743–5748.; Shoji Y., Ishige H., Tamura N., Iwatani W., Norimatsu M., Shimada J., Mizushima Y. Enhancement of anti-Herpetic activity of antisense phosphorothioate oligonucleotides 5’-end modified with geraniol. J. Drug Target. 1998;5(4):261–273.; Vinogradov S.V., Suzdaltseva Y., Alakhov V.Y., Kabanov A.V. Inhibition of herpes simplex virus 1 reproduction with hydrophobized antisense oligonucleotides. Biochem. Biophys. Res. Commun. 1994;203(2):959–966.; Miroshnichenko S.K., Patutina O.A., Burakova E.A., Chelobanov B.P., Fokina A.A., Vlassov V.V., Altman S., Zenkova M.A., Stetsenko D.A. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc. Natl. Acad. Sci. U.S.A. 2019;116(4):1229–1234.; Kandasamy P., McClorey G., Shimizu M., et al. Control of backbone chemistry and chirality boost oligonucleotide splice switching activity. Nucleic Acids Res. 2022;50(10):5443–5466.
-
2Academic Journal
Source: Vojnotehnički Glasnik, Vol 66, Iss 4, Pp 771-835 (2018)
Subject Terms: titanium-dioxide, TiO2-nanoparticles, TiO2 doped with La3+, Fe3+ and V3+, calcination duration, Pseudomonas aeruginosa strains DV 2739 and ATCC 9023, photocatalytic activity, antimicrobial activity, диоксид титана, TiO2-наночастицы, TiO2 легированные La3+, Fe3+ и V3+, продолжительность прокаливания, штаммы Pseudomonas aeruginosa DV 2739 и ATCC 9023, фотокаталитическая активность, антимикробная активность, titanijum-dioksid, TiO2-nanočestice, TiO2 dopiran sa La3+, Fe3+ i V3+, trajanje kalcinacije, Sojevi Pseudomonas aeruginosa DV 2739 i ATCC 9023, fotokatalitička aktivnost, antimikrobna aktivnost, Military Science, Engineering (General). Civil engineering (General), TA1-2040
File Description: electronic resource