-
1Academic Journal
Authors: Leizerman, Samuel
Subject Terms: Population dynamics, Cognitive Neuroscience, Population Dynamics, Cognitive Neuroscience/economics, Complex analysis, Molecular neuroscience, FOS: Economics and business, Machine Learning, Game Theory, Group Dynamics, Group Dynamics/psychology, Machine learning, Learning, Econometrics, Game theory, Neurosciences/economics, Cognitive Neuroscience/education, Social dynamics, Behavior, Machine Learning/statistics & numerical data, Physics, Cognitive neuroscience, Neurosciences/ethics, Strategic Planning, Machine Learning/economics, Cognitive Neuroscience/ethics, Nonlinear Dynamics, Mathematical physics, Computational neuroscience
-
2
-
3Book
Authors: García Pedraza, Rubén, orcid:0000-0001-8110-
Subject Terms: Artificial intelligence, Artificial Intelligence/economics, Artificial Intelligence/standards, Artificial Intelligence/trends, Artificial Intelligence/ethics, Probability, Probability Learning, Probability Theory, Statistics and probability, Deduction, Machine Learning, Machine Learning/economics, Machine Learning/statistics & numerical data, Supervised Machine Learning/history, Supervised Machine Learning/supply & distribution, Singularity, The reason itself, seventh phase
Relation: https://zenodo.org/records/16681810; oai:zenodo.org:16681810; https://doi.org/10.5281/zenodo.16681810
-
4
-
5
-
6
-
7Book
Authors: Danaee, Naveed
Subject Terms: Machine Learning, Data Analysis, Machine Learning/statistics & numerical data, Machine learning, Data Science, Statistics and probability, Data analysis, Data Science/statistics & numerical data, Probability Learning, Probability Theory, Probability, Data science
-
8Academic Journal
Authors: Subhabrata Mitra, Alexander C. van Huffelen, Mats Blennow, Ronit M. Pressler, Lauren C. Weeke, Divyen K Shah, Eugene M. Dempsey, Sean Mathieson, William P. Marnane, Andreea M Pavel, Mona C. Toet, Vicki Livingstone, Mikael Finder, Deirdre M. Murray, Elena Pavlidis, Linda S. de Vries, Geraldine B. Boylan, Janet M. Rennie, Adrienne Foran, Olga Kapellou
Contributors: MS Neonatologie, Other research (not in main researchprogram)
Source: Lancet Child Adolesc Health
Subject Terms: Interobserver agreement, Electroencephalography/methods, Machine Learning/statistics & numerical data, Burden, Care, Machine Learning, Seizures/diagnosis, Seizures, Developmental and Educational Psychology, Journal Article, Humans, EEG, Pediatrics, Perinatology, and Child Health, Monitoring, Physiologic, Netherlands, Sweden, Research Support, Non-U.S. Gov't, Infant, Electroencephalography, Articles, United Kingdom, 3. Good health, Multicenter Study, Monitoring, Physiologic/methods, Randomized Controlled Trial, Intensive Care, Neonatal, Electrographic seizures, Ireland, Algorithms
File Description: application/pdf
Linked Full TextAccess URL: http://www.thelancet.com/article/S235246422030239X/pdf
https://pubmed.ncbi.nlm.nih.gov/32861271
https://www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30239-X/fulltext
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492960
https://www.sciencedirect.com/science/article/abs/pii/S235246422030239X
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492960
https://www.sciencedirect.com/science/article/pii/S235246422030239X
https://pubmed.ncbi.nlm.nih.gov/32861271/
https://dspace.library.uu.nl/handle/1874/440408
http://hdl.handle.net/10468/13122
https://discovery-pp.ucl.ac.uk/id/eprint/10110133/ -
9Academic Journal
Authors: Beccaria, Marco, Franchina, Flavio, Nasir, Mavra, Mellors, Theodore, Hill, Jane E, Purcaro, Giorgia
Source: Molecules, 26 (15), 4600 (2021-07-29)
Subject Terms: GC-MS, SPME, VOCs, features reduction, machine learning, mycobacteria species, random forest, Biomarkers, Volatile Organic Compounds, Biomarkers/analysis, Gas Chromatography-Mass Spectrometry/methods, Machine Learning/statistics & numerical data, Mycobacterium/chemistry, Mycobacterium/metabolism, Mycobacterium abscessus/chemistry, Mycobacterium abscessus/metabolism, Mycobacterium avium/chemistry, Mycobacterium avium/metabolism, Mycobacterium avium Complex/chemistry, Mycobacterium avium Complex/metabolism, Mycobacterium bovis/chemistry, Mycobacterium bovis/metabolism, Principal Component Analysis, Solid Phase Microextraction, Volatile Organic Compounds/classification, Volatile Organic Compounds/isolation & purification, Volatile Organic Compounds/metabolism, Metabolome, Gas Chromatography-Mass Spectrometry, Mycobacterium
Relation: https://www.mdpi.com/1420-3049/26/15/4600/pdf; urn:issn:1420-3049; https://orbi.uliege.be/handle/2268/293038; info:hdl:2268/293038; info:pmid:34361751
-
10Academic Journal
Authors: Pavel, Andreea M, Rennie, Janet M, de Vries, Linda S, Blennow, Mats, Foran, Adrienne, Shah, Divyen K, Pressler, Ronit M, Kapellou, Olga, Dempsey, Eugene M, Mathieson, Sean R, Pavlidis, Elena, van Huffelen, Alexander C, Livingstone, Vicki, Toet, Mona C, Weeke, Lauren C, Finder, Mikael, Mitra, Subhabrata, Murray, Deirdre M, Marnane, William P, Boylan, Geraldine B
Contributors: MS Neonatologie, Other research (not in main researchprogram)
Subject Terms: Algorithms, Electroencephalography/methods, Humans, Infant, Intensive Care, Neonatal, Ireland, Machine Learning/statistics & numerical data, Monitoring, Physiologic/methods, Netherlands, Seizures/diagnosis, Sweden, United Kingdom, Developmental and Educational Psychology, Pediatrics, Perinatology, and Child Health, Journal Article, Research Support, Non-U.S. Gov't, Randomized Controlled Trial, Multicenter Study
File Description: application/pdf
Availability: https://dspace.library.uu.nl/handle/1874/440408
-
11Dissertation/ Thesis
Authors: Rodriguez Henao, Jesús Alberto
Contributors: Vinck Posada, Herbert, Salcedo Reyes, Juan Carlos, Gomez, Cindy Lorena, Fuentes Cabrera, Miguel, Guerra Vega, Angela Patricia, Vargas Calderon, Vladimir, Franco Correa, Marcela, Cortes Cortes, Liliana Jazmin, Godoy Enciso, Sofia, Gomez Arias, Santiago, Grupo de Óptica E Información Cuántica, Superconductividad y Nanotecnología, Rodríguez Henao, Jesús Alberto [0000-0002-0615-2465], Rodriguez, Jesus A. [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000130814]
Subject Terms: Colorimetría, Malaria/diagnóstico por imagen, Machine Learning/statistics & numerical data, Image Interpretation, Computer-Assisted/methods, Gold standard, Computational learning, Malaria/imaging diagnostic, 616 - Enfermedades [610 - Medicina y salud], Sangre extendida, Preprocesamiento de imágenes, Malaria, Aprendizaje Automático/estadística & datos numéricos, Interpretación de Imagen Asistida por Computador/métodos, Aprendizaje computacional, Thin blood film, 535 - Luz y radiación relacionada [530 - Física], Image preprocessing, Gold estándar, YOLO, Colorimetry, 621 - Física aplicada [620 - Ingeniería y operaciones afines], K-means
File Description: application/pdf
-
12Academic Journal
Authors: Kedra, Joanna, Radstake, Timothy, Pandit, Aridaman, Baraliakos, Xenofon, Berenbaum, Francis, Finckh, Axel, Fautrel, Bruno, Stamm, Tanja A, Gomez-Cabrero, David, Pristipino, Christian, Choquet, Remy, Servy, Hervé, Stones, Simon, Burmester, Gerd, Gossec, Laure
Contributors: Translationele immunologie, CTI Radstake, Infection & Immunity
Subject Terms: Advisory Committees/organization & administration, Artificial Intelligence/trends, Big Data, Europe/epidemiology, Humans, Information Storage and Retrieval/trends, Machine Learning/statistics & numerical data, Musculoskeletal Diseases/epidemiology, Neural Networks, Computer, Publications/trends, Radiology/trends, Rheumatic Diseases/epidemiology, Sensitivity and Specificity, biostatistics, rheumatology, machine learning, artificial intelligence, Immunology and Allergy, Immunology, Research Support, Non-U.S. Gov't, Journal Article, Comparative Study
File Description: application/pdf
Availability: https://dspace.library.uu.nl/handle/1874/439942
-
13Electronic Resource
Authors: Buroni, Giovanni, orcid:0009-0007-0292-
Subject Terms: Machine Learning/statistics & numerical data
Relation: https://zenodo.org/records/14187972; oai:zenodo.org:14187972; https://doi.org/10.5281/zenodo.14187972
-
14Dissertation/ Thesis
Authors: Rodriguez Henao, Jesús Alberto
Contributors: Vinck Posada, Herbert, Salcedo Reyes, Juan Carlos, Gomez, Cindy Lorena, Fuentes Cabrera, Miguel, Guerra Vega, Angela Patricia, Vargas Calderon, Vladimir, Franco Correa, Marcela, Cortes Cortes, Liliana Jazmin, Godoy Enciso, Sofia, Gomez Arias, Santiago, Grupo de Óptica E Información Cuántica, Superconductividad y Nanotecnología, Rodríguez Henao, Jesús Alberto 0000-0002-0615-2465, Rodriguez, Jesus A. https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000130814
Subject Terms: 530 - Física::535 - Luz y radiación relacionada, 620 - Ingeniería y operaciones afines::621 - Física aplicada, 610 - Medicina y salud::616 - Enfermedades, Aprendizaje Automático/estadística & datos numéricos, Malaria/diagnóstico por imagen, Interpretación de Imagen Asistida por Computador/métodos, Machine Learning/statistics & numerical data, Malaria/imaging diagnostic, Image Interpretation, Computer-Assisted/methods, Malaria, Gold estándar, Sangre extendida, Preprocesamiento de imágenes, Colorimetría, Aprendizaje computacional, K-means, YOLO, Gold standard, Thin blood film, Image preprocessing, Colorimetry, Computational learning
File Description: vi, 99 páginas; application/pdf
Relation: Bireme; WHO, "Malaria," 2021.; WHO, "Global technical strategy for malaria 2016-2030," 2015.; WHO, "World malaria report 2023," 2023.; WHO, _World malaria report 2019_. World Health Organization, 1 ed., 2019.; N. Moreno, "Lucha contra la malaria en colombia: ?como la ops/oms estan abordando la creciente carga de la enfermedad?," 2024.; O. Ospina, L. Cortes, Z. Cucunuba, N. Mendoza, and P. Chaparro, "Characterization of the national malaria diagnostic network, colombia, 2006-2010 -- caracterizacion de la red nacional de diagnostico de malaria, colombia, 2006-2010," _Biomedica_, vol. 32, 2012.; M. C. T. R. Lopez-Velez, "Aspectos practicos del diagnostico de laboratorio y profilaxis de la malaria,"; L. J. Cortes and Angela Patricia Guerra, "Analisis de concordancia de tres pruebas para el diagnostico de malaria en la poblacion sintomatica de los municipios endemicos de colombia," _Biometaca_, vol. 40, pp. 117-145, 2020.; M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma, "Image analysis and machine learning for detecting malaria," _Translational Research_, vol. 194, pp. 36-55, 4 2018.; B. Srivastava, A. R. Anvikar, S. K. Ghosh, N. Mishra, N. Kumar, A. Houri-Yafin, J. J. Pollak, S. J. Salpeter, and N. Valecha, "Computer-vision-based technology for fast, accurate and cost effective diagnosis of malaria," _Malaria Journal_, vol. 14, p. 526, 12 2015.; T. A. Aris, A. S. Nasir, L. C. Chin, H. Jaafar, and Z. Mohamed, "Fast k-means clustering algorithm for malaria detection in thick blood smear," in _2020 IEEE 10th International Conference on System Engineering and Technology, ICSET 2020 - Proceedings_, 2020.; A. Nanoti, S. Jain, C. Gupta, and G. Vyas, "Detection of malaria parasite species and life cycle stages using microscopic images of thin blood smear," in _2016 International Conference on Inventive Computation Technologies (ICICT)_, p. 1, 2016.; M. Mujahid, F. Rustam, R. Shafique, E. C. Montero, E. S. Alvarado, I. de la Torre Diez, and I. Ashraf, "Efficient deep learning-based approach for malaria detection using red blood cell smears," _Scientific Reports 2024 14:1_, vol. 14, pp. 1-16, 6 2024.; R. R. S. Barrios, "Implementacion de un modelo para la identificacion de parasitos plasmodium en imagenes de muestras de sangre mediante la utilizacion de redes neuronales convolucionales," 2020.; J. Mosquera, "Modelamiento de casos de malaria en la region de ashanti-ghana usando regresion logistica, machine learning y discriminante lineal de fisher," 2024.; L. J. Cortes, L. Munoz, and M. S. Ayala, "Comparacion entre metodologias para el diagnostico microscopico de malaria," _Biomedica_, vol. 38, pp. 244-252, 6 2018.; Minsalud, "Malaria."; CDC, "Malaria," 2024.; CDC, "Anopheles," 2004.; T. Vickers, "Malaria," 2006.; CDC, "Where malaria occurs," 2024.; INS and Minsalud, "Manual para el diagnostico de malaria no complicada en puestos de diagnostico y tratamiento," 2015.; WHO, "Malaria map," 2024.; F. Minsalud, "Malaria - memorias," 2013.; WHO, "Paludismo," 2023.; K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, "Towards ultrasensitive malaria diagnosis using surface enhanced raman spectroscopy," _Scientific Reports_, vol. 6, 2016.; D. M. Rojas Campino, "Espectroscopia raman como metodo de apoyo al diagnostico de malaria," 2023-01-19.; F. D. Krampa, Y. Aniweh, P. Kanyong, and G. Awandare, "Recent advances in the development of biosensors for malaria diagnosis," _Sensors_, vol. 20, p. 799, 2020.; D. M. Newman, J. Heptinstall, R. J. Matelon, L. Savage, M. L. Wears, J. Beddow, M. Cox, H. Schallig, and P. F. Mens, "A magneto-optic route toward the in vivo diagnosis of malaria: Preliminary results and preclinical trial data," _Biophysical Journal_, vol. 95, 2008.; S. E. McBirney, D. Chen, A. Scholtz, H. Ameri, and A. M. Armani, "Rapid diagnostic for point-of-care malaria screening," _ACS Sensors_, vol. 3, 2018.; V. Baptista, M. Silva, G. M. Ferreira, C. Calçada, G. Minas, M. I. Veiga, and S. O. Catarino, "Optical spectrophotometry as a promising method for quantification and stage differentiation of plasmodium falciparum parasites," _ACS Infectious Diseases_, vol. 9, pp. 140-149, 1 2023.; J. A. Adegoke, A. D. Paoli, I. O. Afara, K. Kochan, D. J. Creek, P. Heraud, and B. R. Wood, "Ultraviolet/visible and near-infrared dual spectroscopic method for detection and quantification of low-level malaria parasitemia in whole blood," Analytical Chemistry, vol. 93, 2021.; S. Kasetsirikul, J. Buranapong, W. Srituravanich, M. Kaewthamasorn, and A. Pimpin, "The development of malaria diagnostic techniques: A review of the approaches with focus on dielectrophoretic and magnetophoretic methods," 2016.; S. Juul, C. J. Nielsen, R. Labouriau, A. Roy, C. Tesauro, P. W. Jensen, C. Harmsen, E. L. Kristoffersen, Y. L. Chiu, R. Frohlich, P. Fiorani, J. Cox-Singh, D. Tordrup, J. Koch, A. L. Bienvenu, A. Desideri, S. Picot, E. Petersen, K. W. Leong, Y. P. Ho, M. Stougaard, and B. R. Knudsen, "Droplet microfluidics platform for highly sensitive and quantitative detection of malaria-causing plasmodium parasites based on enzyme activity measurement," ACS Nano, vol. 6, 2012.; G. T. Webster, K. A. D. Villiers, T. J. Egan, S. Deed, L. Tilley, M. J. Tobin, K. R. Bambery, D. McNaughton, and B. R. Wood, "Discriminating the intracrythrocytic li-fecycle stages of the malaria parasite using synchrotron ft-ir microspectroscopy and an artificial neural network," Analytical Chemistry, vol. 81, 2009.; Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, "Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells," Journal of Biomedical Optics, vol. 15, 2010.; N. Singla and V. Srivastava, "Deep learning enabled multi-wavelength spatial coherence microscope for the classification of malaria-infected stages with limited labelled data size," Optics and Laser Technology, vol. 130, 2020.; E. de Jesus Gonzalez Cruz, A. D. Contreras, D. H. G. Aburto, F. E. R. Rosado, and M. Ángel de la Cruz Nicolas, "Manual de tinciones citoquímicas especiales en hematología," 2019.; WHO, "Malaria microscopy quality assurance manual," 2016.; CDC, "Clinical testing and diagnosis for malaria," 2024.; L. Ortega, L. Marrero, O. Valdespino, M. Pomier, O. Trujillo, and C. Rojas, "Evolucion satisfactoria de un paciente adulto con malaria grave y complicada por plasmodium falciparum," Revista Cubana de Medicina Tropical, vol. 74, p. 917, 12 2022.; D. A. Q. Moreno, L. M. M. Sanchez, M. A. A. Giraldo, L. E. V. Asprilla, and J. H. M. Rios, "Malaria, enfermedad tropical de multiples metodos diagnosticos," Archivos de Medicina (Manizales), vol. 17, pp. 402-414, 12 2017.; R. Paschotta, Colorimetry - an encyclopedia article. RP Photonics AG, 2019.; L. Hsien-Che, Introduction to Color Imaging Science. Cambridge University Press, 2005.; K. Boyd and D. Turbert, "Eye anatomy: Parts of the eye and how we see," 4 2023.; RECYL, "La retina," 2024.; U. of Florida, "Image gallery: Vision and the eye."; A. A. of Ophthalmology, "Rods," 2018.; M. Olmo and R. Nave, "Bastones y conos."; A. A. of Ophthalmology, "Cones," 2018.; M. Applebury, M. Antoch, L. Baxter, L. Chun, J. Falk, F. Farhangfar, K. Kage, M. Krzystolik, L. Lyass, and J. Robbins, "The murine cone photoreceptor," Neuron, vol. 27, pp. 513-523, 9 2000.; P. K. Ahnelt, "The photoreceptor mosaic," Eye, vol. 12, pp. 531-540, 5 1998.; R. Sabesan, H. Hofer, and A. Roorda, "Characterizing the human cone photoreceptor mosaic via dynamic photopigment densitometry," PLOS ONE, vol. 10, p. e0144891, 12 2015.; F.-C. Lin, J. K. Zao, K.-C. Tu, Y. Wang, Y.-P. Huang, C.-W. Chuang, H.-Y. Kuo, Y.-Y. Chien, C.-C. Chou, and T.-P. Jung, "Snr analysis of high-frequency steady-state visual evoked potentials from the foveal and extrafoveal regions of human retina," in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1810-1814, IEEE, 8 2012.; Datacolor, "Color measurement-the cie color space," 2019.; R. Paschotta, Scotopic and Photopic Vision - an encyclopedia article. RP Photonics AG, 2019.; M. Olmo, R. Nave, and T. Beaulieu, "Brillo."; M. Olmo and R. Nave, "Mezcla de color aditiva."; C.-Y. Wen and C.-M. Chou, "Color image models and its applications to document examination," 2002.; N. a Ibraheem, M. M. Hasan, R. Z. Khan, and P. K. Mishra, "Understanding color models : A review," ARPN Journal of Science and Technology, vol. 2, 2012.; L. Morgado, E. G. de Mariscal, H. S. Heil, and R. Henriques, "The rise of data-driven microscopy powered by machine learning," 2024.; A. Jung, "Machine learning," 2022.; A. Aljuaid and M. Anwar, "Survey of supervised learning for medical image processing," SN Computer Science, vol. 3, 2022.; R. Sen and S. Das, Unsupervised Learning. 2023.; S. Naeem, A. Ali, S. Anam, and M. M. Ahmed, "An unsupervised machine learning algorithms: Comprehensive review," International Journal of Computing and Digital Systems, vol. 13, 2023.; J. E. van Engelen and H. H. Hoos, "A survey on semi-supervised learning," Machine Learning, vol. 109, 2020.; D. Bergmann, "¿qué es el aprendizaje semisupervisado? -- ibm," 2023.; K. Siren, A. Millard, B. Petersen, M. T. P. Gilbert, M. R. Clokie, and T. Sicheritz-Ponten, "Rapid discovery of novel prophages using biological feature engineering and machine learning," NAR Genomics and Bioinformatics, vol. 3, 2021.; G. Kumar, R. Banerjee, D. K. Singh, N. Choubey, and Arnaw, "Mathematics for machine learning," Journal of Mathematical Sciences & Computational Mathematics, vol. 1, 2020.; M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," 2015.; K. Fu, D. Cheng, Y. Tu, and L. Zhang, "Credit card fraud detection using convolutional neural networks," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9949 LNCS, 2016.; I. BV, "trainyolo," 2023.; A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollar, and R. Girshick, "Segment anything," 2023.; D. Reis, J. Kupec, J. Hong, and A. Daoudi, "Real-time flying object detection with yolov8," 5 2023.; G. Jocher, A. Chaurasia, and J. Qiu, "Ultralytics yolov8," 2023.; J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 779-788, 6 2015.; J. Redmon and A. Farhadi, "Yolo9000: Better, faster, stronger," Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 6517-6525, 12 2016.; J. Redmon and A. Farhadi, "Yolov3: An incremental improvement," 2018.; A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," 4 2020.; NERSC, "Getting started at nersc - nersc documentation."; NERSC, "Architecture - nersc documentation."; NERSC, "National energy research scientific computing center."; OpenCV, "Opencv: Color conversions."; https://repositorio.unal.edu.co/handle/unal/88157; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/