-
1Academic Journal
Authors: O. V. Dorogina, I. N. Kuban, G. A. Zueva, E. V. Zhmud, O. Yu. Vasilyeva, О. В. Дорогина, И. Н. Кубан, Г. А. Зуева, Е. В. Жмудь, О. Ю. Васильева
Contributors: This study was conducted within the framework of state assignments for Central Siberian Botanical Garden SB RAS (project “Analysis of biodiversity, conservation and restoration of rare and resource plant species using experimental methods”, No. AAAA-A21-121011290025-2) and with the financial support of the Ministry of Science and Higher Education of the Russian Federation No. FSUS-2024-0024.
Source: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 210-218 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 210-218 ; 2500-3259 ; 10.18699/vjgb-25-20
Subject Terms: паспортизация, decorative form of Miscanthus sinensis, ISSR markers, S1 and S2 selected forms, G1 and G2 generations, certification, декоративная форма Miscanthus sinensis, ISSR-маркеры, отобранные формы S1 и S2, репродуктивные поколения G1 и G2
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4539/1928; Anisimov A.A., Medvedkov M.S., Skorokhodova A.N. Yield formation features in different Miscanthus species (Miscanthus spp.). In: From Agrarian Sciences to Agriculture. Barnaul: Altai State Agricultural University Publ., 2021;115-116 (in Russian); Berseneva S.A., Ivleva O.E., Maslova A.O. Performance potential of species of Miscantus Аnderss. and genus and prospects of its cultivation in Primorsky Krai. Meždunarodnyj Naučno-issledovatel’skij Žurnal = Int Res J. 2020;7/2:6-10. doi 10.23670/IRJ.2020.97.7.033 (in Russian); Chae W.B., Hong S.J., Gifford J.M., Rayburn A.L., Sacks E.J., Juvik J.A. Plant morphology, genome size, and SSR markers differentiate five distinct taxonomic groups among accessions in the genus Miscanthus. GCB Bioenergy. 2014;6:646-660. doi 10.1111/gcbb.12101; Chen Z., He Yu., Iqbal Yu., Shi Y., Huang H., Yi Z. Investigation of genetic relationships within three Miscanthus species using SNP markers identified by SLAF-seq. BMC Genomics. 2022;23(1):43. doi 10.1186/s12864-021-08277-8; Chou C.-H., Chiang Y.-C., Chiang T.-Y. Genetic variability and phytogeography of Miscanthus sinensis var. condensatus, an apomictic grass, based on RAPD fingerprints. Can J Bot. 2000;78(10):1262- 1268. doi 10.1139/b00-102; Clark L.V., Ryan S., Nishiwaki A., Toma Yo., Zhao H., Peng J., Yoo J.H., Heo K., Yu Ch.Y., Yamada T., Sacks E.J. Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression January. J Exp Bot. 2015;66(14):4213-4225. doi 10.1093/jxb/eru511; Dorogina O.V., Vasilyeva O.Yu., Nuzhdina N.S., Buglova L.V., Gismatulina Yu.A., Zhmud E.V., Zueva G.A., Kominа O.V., Tsybchenko E.A. Resource potential of some species of the genus Miscanthus Anderss. under conditions of continental climate of West Siberian forest-steppe. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2018;22(5):553-559. doi 10.18699/VJ18.394 (in Russian); Dorogina O.V., Vasilyeva O.Yu., Nuzhdina N.S., Buglova I.V., Zhmud E.V., Zueva G.A., Kominа O.V., Kuban I.S., Gusar A.S., Dudkin R.V. The formation and the study of a collection of the Miscanthus resource species gene pool in the conditions of the West Siberian forest steppe. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2019;23(7):926-932. doi 10.18699/VJ19.568 (in Russian); Dorogina O.V., Nuzhdina N.S., Zueva G.A., Gismatulina Yu.A., Vasilyeva O.Yu. Specific shoot formation in Miscanthus sacchariflorus (Poaceae) under different environmental factors and DNA passportization using ISSR markers. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2022;26(1):22-29. doi 10.18699/VJGB-22-04; Doyle J.J., Doyle J.L. A rapid DNA isolation of fresh leaf tissue. Phytochem Bull. 1987;19:11-15 Dyuryagina G.P. On the method of introducing rare and endangered plants. Botanicheskii Zhurnal. = Bot J. 1982;67(5):679-687 (in Russian); Gifford J.M., Chae W.B., Juvik J.A., Swaminathan K., Moose S.P. Mapping the genome of Miscanthus sinensis for QTL associated with biomass productivity. GCB Bioenergy. 2014;7(4):797-810. doi 10.1111/gcbb.12201; Grechushkina-Sukhorukova L.A. Dynamics of growth processes and decorative state of Miscanthus sinensis during introduction in the steppe zone. Agrarnaya Nauka = Agrar Sci. 2022;(7-8):178-182. doi 10.32634/0869-8155-2022-361-7-8-178-182 (in Russian); Greef J.M., Deuter M., Jung C., Schondelmaier J. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Evol. 1997;44(2):185-195. doi 10.1023/A:1008693214629; Gushchina V.A., Volod’kin A.A., Ostroborodova N.I., Agapkin N.D., Letuchiy A.V. Peculiarities of growth and development of introduction of Miscanthus giganteus in the conditions of forest-step zone in Middle Volga. Agrarnyi Nauchnyi Zhurnal = Agrar Sci J. 2018;1: 10-13. doi 10.28983/asj.v0i1.318 (in Russian); Kapustyanchik S.Yu., Burmakina N.V., Yakimenko V.N. Evaluation of the ecological and agrochemical state of agrocenosis with long-term growing of Miscanthus in Western Siberia. Agrohimia. 2020;9:65- 73. doi 10.31857/S0002188120090082 (in Russian); Kashin A.S., Kritskaya T.A., Schanzer I.A. Genetic polymorphism of Tulipa gesneriana L. evaluated on the basis of the ISSR marking data. Russ J Genet. 2016;52(10):1023-1033. doi 10.1134/S1022795416100045; Lee K.Y., Zhang L., Lee G.-J. Botanical and germinating characteristics of Miscanthus species native to Korea. Hort Environ Biotechnol. 2012;53(6):490-496. doi 10.1007/s13580-012-0137-9; Methods for Testing Crop and Planting Material Quality. In: Crop Seeds and Planting Material. Moscow: Izdatel’stvo Standartov, 1973;238- 405 (in Russian); Mitros T., Session A.M., James B.T., Wu G.A., Belaffif M.B., Clark L.V. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat Commun. 2020;11:5442. doi 10.1038/s41467-020-18923-6; Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979; 76(10):5269-5273. doi 10.1073/pnas.76.10.5269; Nie G., Zhang X.-Q., Huang L.-K., Xu W.-Z., Wang J.-P., Zhang Y.-W., Ma X., Yan Y.-H., Yan H.-D. Genetic variability and population structure of the potential bioenergy crop Miscanthus sinensis (Poaceae) in southwest China based on SRAP markers. Molecules. 2014; 19(8):12881-12897. doi 10.3390/molecules190812881; Nishiwaki A., Mizuguti A., Kuwabara S., Matuura H., Yamaguchi S., Toma Y., Miyashita T., Yamada T., Ishigaki G., Akashi R., Rayburn L.A., Stewart J.R. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot. 2011; 98(1):154-159. doi 10.3732/ajb.1000258; Novikova A.A., Sheikina O.V., Novikov P.S., Doronina G.U. Estimation of the ISSR-markers application for systematization and genetic certification of genus Rhododendron. Politematicheckij Setevoj Elektronnyj Nauchnyj Zhurnal Kubanskogo Gosudarstvennogo Agrarnogo Universiteta = Polythematic Online Scientific Journal of Kuban State Agrarian University. 2012;82(82):916-926 (in Russian); Orzeszko-Rywka A., Rochalska M. Possibility of seed quality improvement in Miscanthus sinensis (Andersson). J Res Appl Agric Engng. 2016;61(4):83-88; Potseluyev O.M., Kapustyanchik S.Yu. Assessment of the feasibility of growing Miscanthus under a cover of cereal crops. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of Altai State Agricultural University. 2018;10(168):55-60 (in Russian); Swaminathan K., Chae W.B., Mitros T., Kranthi V., Xie L., Barling A., Glowacka K., Hall M., Jezowski S., Ming R., Hudson M., Juvik J.A., Rokhsar D.S. Moose S.P. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics. 2012;13:142. doi 10.1186/1471-2164-13-142; Tamura K., Uwatoko N., Yamashita H., Fujimori M., Akiyama Y., Shoji A., Sanada Y., Okumura K., Gau M. Discovery of natural interspecific hybrids between Miscanthus sacchariflorus and Miscanthus sinensis in Southern Japan: morphological characterization, genetic structure, and origin. BioEnergy Res. 2016;9(1):315-325. doi 10.1007/s12155-015-9683-1; Tang Y.-M., Xiao L., Igbal Y., Liao J.-F., Xiao L.-Q., Yi Z.-L., She C.-W. Molecular cytogenetic characterization and phylogenetic analysis of four Miscantus species (Poaceae). Comp Cytogenet. 2019;13(3): 211-230. doi 10.3897/CompCytogen.v13i3.35346; USDA Plant Hardiness Zone Map https://planthardiness.ars.usda.gov/ (accessed: 03.2024) Van de Peer Y.V., De Wachter R.D. Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Bioinformatics. 1997; 13(3):227-230. doi 10.1093/bioinformatics/13.3.227; Xu W.Z., Zhang X.Q., Huang L.K., Nie G., Wang J.P. Higher genetic diversity and gene flow in wild populations of Miscanthus sinensis in southwest China. Biochem Syst Ecol. 2013;48:174-181. doi 10.1016/j.bse.2012.11.024; Yakimenko V.N., Kapustyanchik S.Yu., Galitsyn G.Yu. Cultivation of Miscanthus in continental regions of Russia. Zemledelie = Agriculture. 2021;2:27-31. doi 10.24411/0044-3913-2021-10206 (in Russian); Zhang G., Ge C., Xu P., Wang S., Cheng S., Han Y., Wang Y., ZhuangY., Hou X., Yu T., Xu X., Yang Y., Yin X., Wang W., Liu W., Zheng C., Sun X., Wang Z., Ming R., Dong S., Ma J., Zhang X., Chen C. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Nat Plants. 2021;7:608-618. doi 10.1038/s41477-021-00908-y; Zueva G.A. Introduction of ornamental cereals and sedges in the Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences. Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal. 2020;3(35):30-41. doi 10.32516/2303-9922.2020.35.3 (in Russian); https://vavilov.elpub.ru/jour/article/view/4539
-
2Academic Journal
-
3Academic Journal
-
4Academic Journal
-
5
-
6
-
7Academic Journal
Authors: S. S. Yudanova, O. V. Dorogina, O. Yu. Vasilyeva, С. С. Юданова, О. В. Дорогина, О. Ю. Васильева
Contributors: The study was carried out as part of Complex Program for Fundamental Scientific Research of the Siberian Branch of the Russian Academy of Sciences (Project No. AAAA-A21-121011290025-2 “Analysis of Biodiversity, Conservation and Restoration of Rare and Resource Plant Species Using Experimental Methods”), using the materials provided by CSBG SB RAS’s Collections of Living Plants in Open and Protected Grounds, USU 440534.
Source: Vavilov Journal of Genetics and Breeding; Том 28, № 1 (2024); 55-62 ; Вавиловский журнал генетики и селекции; Том 28, № 1 (2024); 55-62 ; 2500-3259 ; 10.18699/vjgb-24-01
Subject Terms: фенологические наблюдения, grandiflora, Rosa Kordesii, ISSR markers, morphological characters, phenological observations, грандифлора, розы Кордеса, ISSR-маркеры, морфологические признаки
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4055/1804; Adritskaya N.A., Kapelyan A.I. Comparative assessment of winter hardiness and decorative properties of various varieties of roses in the rose garden of the Botanical Garden of Peter the Great. Izvestiya Sankt-Peterburgskogo Gosudarstvennogo Agrarnogo Universiteta = Proceedings of the Saint Petersburg State Agrarian University. 2022;2(67):48-58. DOI 10.24412/2078-1318-2022-2-48-58 (in Russian); Amom T., Nongdam P. The use of molecular marker methods in plants: a review. Int. J. Cur. Res. Rev. 2017;9(17):1-7. DOI 10.7324/IJCRR.2017.9171; Annotated Catalog of Ornamental Plants from the Collection of the Nikita Botanical Garden. Vol. I. Collections of garden roses, clematis, and lilacs. Simferopol: ARIAL Publ., 2018 (in Russian); Bardakova S.A. Influence of adverse climatic conditions on the growth and development of garden roses in the Stavropol Botanical Garden. Vestnik APK Stavropolya = Agricultural Bulletin of the Stavropol Region. 2017;1(25):120-122 (in Russian); Beideman I.N. Methodology for Studying the Phenology of Plants and Plant Communities. Novosibirsk: Nauka Publ., 1974 (in Russian); Bendahmane M., Dubois A., Raymond O., Bris M.L. Genetics and genomics of flower initiation and development in roses. J. Exp. Bot. 2013;64(4):847-857. DOI 10.1093/jxb/ers387; Bylov V.N., Shtanko I.I., Yudintseva E.V., Mikhailov N.L. Roses. Summary of introduction. Moscow: Nauka Publ., 1972 (in Russian); Cairns T. (Ed.) Modern Roses XI: The world encyclopedia of roses. New York: Acad. Press, 2007; Cui W.H., Zhong M.C., Du X.Y., Qu X.J., Jiang X.D., Sun Y.B., Wang D., Chen S.Y., Hu J.Y. The complete chloroplast genome sequence of a rambler rose, Rosa wichuraiana (Rosaceae). Mitochondrial DNA Part B. 2020;5(1):252-253. DOI 10.1080/23802359.2019.1700198; Dedu I.I. Ecological Encyclopedic Dictionary. Kishinev, 1989 (in Russian); Dorogina O.V., Zhmud E.V. Molecular-genetic methods in plant ecology. Contemporary Problems of Ecology. 2020;13(4):333-345. DOI 10.1134/S1995425520040058; Doyle J.J., Doyle J.L. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem. Bul. 1987;19(1):11-15; Duta-Cornescu G., Pavlusenco C.-E., Pojoga D.M., Negulici M.E., Constantin N., Simon-Gruita A. Genetic analysis of some roses cultivars appropriate for S-E Romania climate using PCR-ISSR technology. AgroLife Sci. J. 2017;6(1):69-74; El-Assal S.E.D., El-Awady M.A., El-Tarras A., Shehab G. Assessing the genetic relationship of Taif rose with some rose genotypes (Rosa sp.) based on random amplified polymorphic DNA, inter simple sequence repeat and simple sequence repeat markers. Am. J. Biochem. Biotechnol. 2014;10(1):88-98. DOI 10.3844/ajbbsp.2014.88.98; Fomina T.I. Biological Characteristics of Ornamental Plants of Natural Flora in Western Siberia. Novosibirsk: Acad. Publ. House “Geo”, 2012 (in Russian); Giovannini A., Laura M., Nesi B., Savona M., Cardi T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Rep. 2021;40(3):461-478. DOI 10.1007/s00299-020-02632-x; Gorodnyaya E.V. A promising assortment of roses for use in landscaping and breeding in the foothill zone of Crimea. Uchenye Zapiski Tavricheskogo Natsyonalnogo Universiteta imeni Vernadskogo. Seriya Biologiya, Khimiya = Proceedings of the Vernadsky Taurida National University. Series: Biology, Chemistry. 2014;27(5):29-37 (in Russian); Haynes W. Student’s t-test. In: Dubitzky W., Wolkenhauer O., Cho K.H., Yokota H. (Eds.) Encyclopedia of Systems Biology. New York: Springer, 2013;2023-2025. DOI 10.1007/978-1-4419-9863-7_1184; Kapelyan A.I. Grafted and own-rooted roses in the Saint Petersburg Botanical Garden. Collection of Scientific Works of the Nikita State Botanical Garden. 2017;145:271-274 (in Russian); Klimenko Z.K. The results of long-term work (1824–2010) on the breeding of garden roses in the Nikita Botanical Garden. Byulleten Gosudarstvennogo Nikitskogo Botanicheskogo Sada = Bulletin of the Nikita State Botanical Garden. 2010;100:49-55 (in Russian); Klimenko Z.K., Rubtsova E.L. Roses. Kyiv: Naukova dumka Publ., 1986 (in Russian); Klimenko Z.K., Vasilyeva O.Yu., Zorina E.V., Dzyuba O.V. Ecological and geographical testing of garden roses in three climatic zones. Samarskiy Nauchnyi Vestnik = Samara Journal of Science. 2019;8(1):36-42. DOI 10.24411/2309-4370-2019-11105 (in Russian); Li S., Zhong M., Dong X., Jiang X., Xu Y., Sun Y., Cheng F., Li D.Z., Tang K., Wang S., Dai S., Hu J.Y. Comparative transcriptomics identifies patterns of selection in roses. Plant Biol. 2018;18(1):371. DOI 10.1186/s12870-018-1585-x; Methodology of State Variety Testing of Agricultural Crops. Iss. 6. Ornamental crops. Moscow: Kolos Publ., 1968 (in Russian); Nei M., Li W.-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76(10):5269-5273. DOI 10.1073/pnas.76.10.5269; Pashina M.V. Rhythms of growth and development of garden roses in the Irtysh forest-steppe. Vestnik IrGSHA. 2011;6(44):110-116 (in Russian); Plugatar Yu.V., Klimenko Z.K., Plugatar S.A., Zykova V.K., Kravchenko I.N. Rambling roses in the landscape of the southern coast of the Crimea: historical traditions of their use. Acta Hortic. 2018;1201: 49-55. DOI 10.17660/ActaHortic.2018.1201.88; Plugatar Yu.V., Klimenko Z.K., Zykova V.K., Plugatar S.A. Methods and results of roses breeding from different garden groups in the south of Russia. Acta Hortic. 2019;1255:31-34. DOI 10.17660/ActaHortic.2019.1255.6; Raymond O., Gouzy J., Just J., Badouin H., Verdenaud M., Lemainque A., Vergne P., Moja S., Choisne N., Pont C., … Liu C., Le Bris M., Salse J., Baudino S., Benhamed M., Wincker P., Bendahmane M. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 2018;50(6):772-777. DOI 10.1038/s41588-018-0110-3; Shi S., Zhang Z. Genetic and biochemical aspects of floral scents in roses. Int. J. Mol. Sci. 2022;23(14):8014. DOI 10.3390/ijms23148014; Suprun N.A. Comprehensive assessment of the collection of rose varieties of the VSSPU Botanical Garden. In: Proceedings on the Introduction and Acclimatization of Plants. Izhevsk, 2021;525-529 (in Russian); Tyshchenko E.L. Promising garden groups of roses for use in landscaping in southern Russia. In: Scientific Works of the North Caucasian Zonal Research Institute for Horticulture and Viticulture. 2015;7: 67-72 (in Russian); Van de Peer Y., Wachter R.D. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 1994; 10(5):569-570; Vasilyeva O.Yu. Introduction of Roses in Western Siberia. Novosibirsk: Nauka Publ., 1999 (in Russian); Vasilyeva O.Yu., Dorogina O.V., Yudanova S.S., Plugatar S.A., Klimenko Z.K. Identifying the rose varieties and natural forms using ISSR-markers. BIO Web Conf. 2020;24:00091. DOI 10.1051/bioconf/20202400091; Yan H., Zhang H., Chen M., Jian H., Baudino S., Caissard J.C., Bendahmane M., Li S., Zhang T., Zhou N., Qiu X., Wang Q., Tang K. Transcriptome and gene expression analysis during flower blooming in Rosa chinensis ʻPallidaʼ. Gene. 2014;540(1):96-103. DOI 10.1016/j.gene.2014.02.008; https://vavilov.elpub.ru/jour/article/view/4055
-
8Academic Journal
Authors: O. V. Sheikina, E. M. Romanov, О. В. Шейкина, Е. М. Романов
Contributors: The research work was supported by the Russian Science Foundation (RSF, No. 23-16-00220), https://rscf.ru/en/project/23-16-00220/ using equipment of the Core Facility Centre “Ecology, biotechnologies and processes for obtaining environmentally friendly energy carriers” of Volga State University of Technology, Yoshkar-Ola.
Source: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 148-154 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 148-154 ; 2500-3259 ; 10.18699/vjgb-24-15
Subject Terms: ISSR-маркеры, plus trees, genetic diversity, differentiation, ISSR markers, плюсовые деревья, генетическое разнообразие, дифференциация
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4084/1821; Bergman F., Ruetz W. Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations. For. Ecol. Manag. 1991;46(1-2):39-47. DOI 10.1016/0378-1127(91)90243-O; Besschetnova N.N., Besschetnov V.P. Variability of morphometrical characteristics of needles at a clonal plantation of plus trees of scots pine (Pinus sylvestris L.). Vavilovskii Zhurnal Genetiki i Selekt sii = Vavilov Journal of Genetics and Breeding. 2017;21(2):198-206. DOI 10.18699/VJ17.237 (in Russian); Chertov N., Nechaeva Y., Zhulanov A., Pystogova N., Danilova M., Boronnikova S., Kalendar R. Genetic structure of Pinus populations in the Urals. Forests. 2022;13(8):1278. DOI 10.3390/f1308 1278; Cipriano J., Carvalho A., Fernandes C., Gaspar M.J., Pires J., Bento J., Roxo L., Louzada J., Lima-Brito J. Evaluation of genetic diversity of Portuguese Pinus sylvestris L. populations based on molecular data and inferences about the future use of this germplasm. J. Genet. 2013;92(2):e41-e48. DOI 10.1007/s12041-013-0241-3; Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987;19:11-15; Hosius B., Leinemann L., Konnert M., Bergmann F. Genetic aspects of forestry in the Central Europe. Eur. J. For. Res. 2006;125(4):407-417. DOI 10.1007/s10342-006-0136-4; Hui-yu L., Jing J., Gui-feng L., Xu-jun M., Jing-xiang D., Shi-lie L. Genetic variation and division of Pinus sylvestris provenances by ISSR markers. J. For. Res. 2005;16(3):216-218. DOI 10.1007/BF02856818; Ilinov A.A., Raevskiy B.V. Comparative evaluation of the genetic diversity of natural populations and clonal seed orchards of Pinus sylvestris L. and Picea × fennica (Regel) Kom. in Karelia. Russ. J. Genet. Appl. Res. 2017;7(6):607-616. DOI 10.1134/S2079059717060065; Ilinov A.A., Raevsky B.V. Genetic diversity of scots pine trees of different selection categories in plus stands of Karelia. Ekologic heskaya Genetika = Ecological Genetics. 2021;19(1):23-35. DOI 10.17816/ecogen50176 (in Russian); Ilinov A.A., Raevsky B.V. Genetic evaluation by microsatellite loci of Pinus sylvestris L. plus trees. Lesnoy Zhurnal = Russian Forestry Journal. 2023;3:48-68. DOI 10.37482/0536-1036-2023-3-48-68 (in Russian); Kamalov R.M., Peturenko M.Yu., Degtyareva A.P. Variability of indicators of molecular markers in clones of plus trees Pinus sylvestris L. Trudy Sankt-Peterburgskogo Nauchno-Issledovatel’skogo Instituta Lesnogo Khozyaystva = Proceedings of the Saint Petersburg Forestry Research Institute. 2022;3:4-14. DOI 10.21178/20796080.2022.3.4 (in Russian); Khanova E., Konovalov V., Timeryanov A., Isyanyulova R., Rafikova D. Genetic and selection assessment of the scots pine (Pinus sylvestris L.) in forest seed orchards. Wood Res. 2020;65(2):283-292. DOI 10.37763/wr.1336-4561/65.2.283292; Koelewijn H.P., Koski V., Savolainen O. Magnitude and timing of inbreeding depression in Scots pine (Pinus sylvestris L.). Evolution. ;53(3):758-768. DOI 10.1111/j.1558-5646.1999.tb05370.x; Milyutina T.N., Sheikina O.V., Novikov P.S. Molecular-genetic research of variation in clonal progeny of Pinus sylvestris plus trees using ISSR markers. Khvoynye Boreal’noy Zony = Conifers of the Boreal Area. 2013;31(1-2):102-105 (in Russian); Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics. 2012;28(19):2537-2539. DOI 10.1093/bioinformatics/bts460; Prishnivskaya Ya.V., Nassonova E.S., Chertov N.V., Zhulanov А.A., Vasileva Yu.S., Boronnikova S.V., Kalendar R.N. Genetic diversity within species of two species woody plants populations in Perm Krai. Bulleten Nauki i Praktiki = Bulletin of Science and Practice. 2019;5(4):58-68. DOI 10.33619/2414-2948/41/06 (in Russian); Sannikov S.N., Petrova I.V., Egorov E.V., Sannikova N.S. Searching for and revealing the system of pleistocene refugia for the species Pinus sylvestris L. Russ. J. Ecol. 2020;51(3):215-223. DOI 10.1134/S1067413620030133; Sboeva Y., Chertov N., Nechaeva Y., Valeeva A., Boronnikova S., Kalendar R. Genetic diversity, structure, and differentiation of Pinus sylvestris L. populations in the East European Plain and the Middle Urals. Forests. 2022;13(11):1798. DOI 10.3390/f13111798; Sheikina O.V. Genetic structure and differentiation of Scots pine (Pinus sylvestris L.) populations in the Middle and Upper Volga Regions. Ekologicheskaya Genetika = Ecological Genetics. 2022a; 20(4):261-270. DOI 10.17816/ecogen110866 (in Russian); Sheikina O.V. Application of molecular markers in forest breeding and seed production in Russia: experience and prospects (review). Vestnik Povolzhskogo Gosudarstvennogo Tekhnologicheskogo Universiteta. Seriya: Les. Ekologiya. Prirodopolzovanie = Vestnik of Volga State University of Technology. Series: Forest. Ecology. Nature Management. 2022b;2(54):64-79. DOI 10.25686/2306-2827.2022.2.64 (in Russian); Shigapov Z.H. Comparative genetic analysis of forest seed plantations and natural populations of Scots pine. Lesovedenie = Russian Journal of Forest Science. 1995;3:19-24 (in Russian); Takezaki N., Nei M., Tamura K. POPTREEW: web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 2014; 31(6):1622-1624. DOI 10.1093/molbev/msu093; Tarakanov V.V., Kalchenko L.I. Phenetic Analysis of Clonal and Natural Populations of Pinus sylvestris L. in the Altai Territory. Novosibirsk: Acad. Publ. House “Geo”, 2015 (in Russian); Tarakanov V.V., Palenova M.M., Parkinа O.V., Rogovtsev R.V., Tretyakova R.A. Forest tree breeding in Russia: achievements, challenges, priorities (review). Lesokhozyastvennaya Informatsiya = Forestry Information. 2021;1:100-143. DOI 10.24419/LHI.2304-3083.2021.1.09 (in Russian); Tsarev A.P., Laur N.V., Tsarev V.A., Tsareva R.P. The current state of forest breeding in the Russian Federation: the trend of recent decades. Lesnoy Zhurnal = Russian Forestry Journal. 2021;6:38-55. DOI 10.37482/0536-1036-2021-6-38-55 (in Russian); Vasilyeva Y., Chertov N., Nechaeva Y., Sboeva Y., Pystogova N., Boronnikova S., Kalendar R. Genetic structure, differentiation and originality of Pinus sylvestris L. populations in the East of the East European Plain. Forests. 2021;12(8):999. DOI 10.3390/f12080999; Vidyakin A.I., Boronnikova S.V., Nechayeva Y.S., Pryshniv skaya Y.V., Boboshina I.V. Genetic variation, population structure, and differentiation in Scots pine (Pinus sylvestris L.) from the northeast of the Russian plain as inferred from the molecular genetic analysis data. Russ. J. Genet. 2015;51(12):1213-1220. DOI 10.1134/S1022795415120133; https://vavilov.elpub.ru/jour/article/view/4084
-
9Conference
Subject Terms: генетический паспорт, роза эфиромасличная, ISSR-маркеры, ISSR-праймеры, генетическая формула, полиморфные фрагменты
Relation: https://zenodo.org/records/8254464; oai:zenodo.org:8254464; https://doi.org/10.5281/zenodo.8254464
-
10
-
11Academic Journal
Source: Turczaninowia; Том 23 № 3 (2020): Turczaninowia; 67-82
Turczaninowia; Vol 23 No 3 (2020): Turczaninowia; 67-82Subject Terms: 0301 basic medicine, 0303 health sciences, Larix sibirica Ledeb, ISSR-markers, ISSR-маркеры, genetic diversity, 15. Life on land, populations, abscisic acid, генетическое разнообразие, 03 medical and health sciences, генетическая структура, популяции, resin acids, смоляные кислоты
File Description: application/pdf
-
12Academic Journal
Authors: Кузьменчук, А.Л, Халюк, В.А.
Subject Terms: голубика, ISSR-маркеры, молекулярно-генетический анализ
File Description: application/pdf
Availability: https://rep.polessu.by/handle/123456789/34374
-
13Academic Journal
Authors: Duca, M.V., Clapco, S.F., Mutu Calmîş, A., Mutu, A., Bivol, I.V.
Source: Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţele vieţii 346 (2) 39-47
Subject Terms: SSR markers, AMOVA, broomrape, marcheri, Genetic Variation, генетическая изменчивость, ISSR-маркеры, marcheri SSR, ISSR markers, заразиха, Orobanche cumana, variabilitate genetică
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/167198
-
14Academic Journal
Source: Бюллетень Главного ботанического сада.
Subject Terms: ISSR-markers, genetic polymorphism, Nitraria sibirica Pall, ISSR-маркеры, генетический полиморфизм, редкий вид, rare species
-
15Academic Journal
Authors: K. D. Bone, I. V. Bocharkina, G. I. Karlov, O. V. Razumova, К. Д. Боне, Ю. В. Бочаркина, Г. И. Карлов, О. В. Разумова
Contributors: Работа выполнена при финансовой поддержке Российского научного фонда (соглашение № 17-76-10060).
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 75, № 1 (2020); 43-48 ; Вестник Московского университета. Серия 16. Биология; Том 75, № 1 (2020); 43-48 ; 0137-0952
Subject Terms: дендрограмма, ISSR markers, PCR, DNA polymorphism, phylogenetics, population genetics, dendrogram, ISSR-маркеры, ПЦР, полиморфизм ДНК, филогенетика, популяционная генетика
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/838/506; Комиссия по генетическим ресурсам в сфере продовольствия и сельского хозяйства. Состояние всемирных генетических ресурсов животных в сфере продовольствия и сельского хозяйства. ФАО, 2010. ВИЖ РАСХН, 2010. Москва. C. 359–380.; Das K., Hussain G.Sh., Mangla Y., Dar T.U.H., Chaudhary M., Thakur R.K., Tandon R., Raina S.N., Goel Sh. ISSR markers for gender identification and genetic diagnosis of Hippophaё rhamnoides ssp. turkestanica growing at high altitudes in Ladakh region (Jammu and Kashmir) // Protoplasma. 2017. Vol. 254. N 2. P. 1063–1077.; Rousi A. The genus Hippophaë L. A taxonomic study // Ann. Bot. Fennici. 1971. Vol. 8. N 3. P. 177–227.; Li T.S.C., Schroeder W.R. Sea Buckthorn (Hippophaё rhamnoides L.): A multipurpouse plant // HortTechnology. 1996. Vol. 6. N 4. P. 370–380.; Bernarth J., Foldesi D. Sea buckthorn (Hippophaё rhamnoides L.): a promising new medicinal and food crop // J. Herbs Spices Med. Plants. 1992. Vol. 1. N 1–2. P. 27–35.; Li H., Ruan Ch.-J., Teixeira da Silva J.A. Identification and genetic relationship based on ISSR analysis in a germplasm collection of sea buckthorn (Hippophaё L.) from China and other countries // Sci. Hortic. 2009. Vol. 123. N 2. P. 263–271.; Ruan C.J., Xie Q.L., Li D.Q. Function and benefit of sea buckthorn improving eco-environment of Loess Plateau // Proceedings of 12th ISCO Conference. Beijing. 2002. URL: http://www.tucson.ars.ag.gov (дата обращения: 19.02.2020).; Tian Ch., Lei Y., Shi S., Nan P., Chen J., Zhong Y. Genetic diversity of sea buckthorn (Hippophaё rhamnoides) populations in northeastern and northwestern China as revealed by ISSR markers // New Forest. 2004. Vol. 27. N 3. P. 229–237.; Земцова А.Я., Зубарев Ю.А., Гунин А.В., Иванова М.С. Оценка генетического полиморфизма образцов рода облепихи (Hippophaё L.) различного эколого-географического происхождения посредством ISSRмаркеров // Вавил. ж. генет. и селекции. 2017. Vol. 21. N 6. C. 623–629.; Tikunov Yu.M., Khrustaleva L.I., Karlov G.I. Application of ISSR markers in the genus Lycopersicon // Euphytica. 2003. Vol. 131. N 1. P. 71–81.; Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants // Mol. Ecol. 2004. Vol. 13. N 5. P. 1143–1155.; Kojima T., Nagaoka T., Noda K., Ogihara Y. Genetic linkage map of ISSR and RAPD markers in einkorn wheat in relation to that of RFLP markers // Theor. Appl. Genet. 1998. Vol. 96. N 1. P. 37–45.; Doyle, J.J., Doyle J.L. Isolation of plant DNA from fresh tissue // Focus. 1990. Vol. 12. N 1. P. 13–15.
Availability: https://vestnik-bio-msu.elpub.ru/jour/article/view/838
-
16Academic Journal
Source: Вестник Томского государственного университета. Биология. 2020. № 50. С. 101-118
Subject Terms: генетическое разнообразие, внутриценопопуляционная изменчивость, сосна обыкновенная, ценопопуляции, ISSR-маркеры, межценопопуляционная изменчивость, болота, суходолы
File Description: application/pdf
-
17Academic Journal
Source: Plant varieties studying and protection; Том 15, № 4 (2019); 442-450
«Plant Varieties Studying and Protection»; Том 15, № 4 (2019); 442-450
Plant Varieties Studying and Protection; Том 15, № 4 (2019); 442-450Subject Terms: 0106 biological sciences, 577.21:631.526.32:635.621.3, Cucurbita pepo L, polymorphism, ISSR markers, genetic divergence, cluster analysis, поліморфізм ДНК, ISSR-маркери, генетична дивергенція, кластерний аналіз, 0401 agriculture, forestry, and fisheries, 04 agricultural and veterinary sciences, 01 natural sciences, полиморфизм ДНК, ISSR-маркеры, генетическая дивергенция, кластерный анализ
File Description: application/pdf
Access URL: http://journal.sops.gov.ua/article/view/189081
-
18Academic Journal
Authors: A.S. Domblides, E.A. Domblides, L.U. Kan, V.S. Romanov
Source: Овощи России, Vol 0, Iss 3, Pp 24-27 (2011)
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, issr маркеры, onion species, issr markers, полиморфизм, allium, genetic polymorphism, виды лука, Agriculture
-
19Academic Journal
Authors: E. V. Kobozeva, S. V. Asbaganov, O. V. Dorogina, A. V. Agafonov, Е. В. Кобозева, С. В. Асбаганов, О. В. Дорогина, А. В. Агафонов
Contributors: Российский фонд фундаментальных исследований, Cand. Sci. (Biol.) D.E. Nikonova (Gerus) and the staff of the Gorny Altay Botanical Garden (Kamlak Village, Altay Republic)
Source: Vavilov Journal of Genetics and Breeding; Том 21, № 1 (2017); 135-145 ; Вавиловский журнал генетики и селекции; Том 21, № 1 (2017); 135-145 ; 2500-3259
Subject Terms: семенная фертильность, taxonomy, diagnostic features, ISSR markers, hybridization, seed fertility, таксономия, диагностические признаки, ISSR-маркеры, гибридизация
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/913/888; Agafonov A.V., Salomon B. Genepools among SH genome Elymus species in boreal Eurasia. Triticeae IV. Eds. P. Hernández et al. Consejeria de Agricultura y Pesca. Spain, Sevilla, 2002;37-41.; Agafonov A.V. The principle of recombinational (RGP) and introgressive (IGP) gene pools in the taxonomy of the genus Elymus L. Sibirskiy Ekologicheskiy Zhurnal=Siberian Ecological Journal. 1997;4(1):81-89. (in Russian); Agafonov A.V. Intraspecific structure and reproductive relationships between Elymus mutabilis and E. transbaicalensis (Poaceae) in Southern Siberia from the viewpoint of taxonomical genetics. Genetika=Genetics. 2004;40(11):1229-1238. (in Russian); Agafonov A.V. Differentiation of the genus Elymus L. (Triticeae: Poaceae) in the Asiatic part of Russia in the view of taxonomical genetics. Sibirskij botanicheskiy vestnik: elektronnyy zhurnal = Siberian Botanical Bulletin: online journal. 2007;2(1):5-15. Available at: http://www.csbg.nsc.ru/uploads/journal.csbg.ru/pdfs/i2.pdf. (in Russian); Agafonov A.V., Baum B.R. Individual variation and reproductive properties of sexual hybrids in the complex of Elymus trachycaulus (Poaceae: Triticeae) and closely related taxa. 1. Polymorphism of storage endosperm proteins in biotypes from Northern America and Eurasia. Turczaninowia. 2000;3(1):63-75. (in Russian); Agafonov A.V., Gerus D.E., Dorogina O.V. Self-pollination in species of the genus Elymus (Triticeae: Poaceae) and its reflection in polypeptide patterns of endosperm proteins. Sibirskij botanicheskiy vestnik: elektronnyy zhurnal=Siberian Botanical Bulletin: online journal. 2008;3(1-2):21-26. Available at: http://www.csbg.nsc.ru/uploads/journal.csbg.ru/pdfs/i4.pdf. (in Russian); Dewey D.R. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Gene Manipulation in Plant Improvement. Ed. J.P. Gustafson. N.Y.: Plenum Publ. Corp., 1984;209-279.; Kobozeva E.V., Agafonov A.V. Revision of the subsection Pendulini (Nevski) Tzvelev of the genus Elymus L. (Poaceae). Systematic notes on the materials of P.N. Krylov Herbarium of Tomsk State University. 2015;112:22-31. (in Russian); Kobozeva E.V., Olonova M.V., Asbaganov S.V., Agafonov A.V. Polymorphism and specifity of StY-genome species Elymus gmelinii and E. pendulinus (Triticeae, Poaceae) in the territory of Asian part of Russia. Rastitel’nyy mir Aziatskoj Rossii = Plant Life of Asian Russia. 2015;2(18):45-55. (in Russian); Kobozeva E.V., Ovсhinnikova S.V., Agafonov A.V. Variation and taxonomic relationships between StY-genome species Elymus pendulinus, E. brachypodioides and E. vernicosus (Triticeae: Poaceae). Rastitel’nyy mir Aziatskoj Rossii = Plant Life of Asian Russia. 2012;2(10):87-93. (in Russian); Kostina E.V., Agafonov A.V., Salomon B. Electrophoretic properties and variability of endosperm proteins of Elymus caninus (L.) L. Triticeae III. Ed. A.A. Jaradat. Enfield, New Hampshire: Sci. Publ., 1998;265-272.; Lobashev M.E. Genetika [Genetics]. Leningrad, Leningrad State University Publ., 1967. (in Russian); Lu B.-R., von Bothmer R. Intergeneric hybridization between Hordeum and Asiatic Elymus. Hereditas. 1990;112:109-116.; Lu B.-R., von Bothmer R. Meiotic analysis of Elymus caucasicus, E. longearistatus, and their interspecific hybrids with twenty-three Elymus species: Triticeae (Poaceae). Plant Syst. Evol. 1993;185(1): 35-53.; Lu B.-R., Salomon B., von Bothmer R. Interspecific hybridization with Elymus confusus and E. dolichaterus, and their genomic relationships (Poaceae: Triticeae). Plant Syst. Evol. 1995;197(1):1-17.; Mirkin B.M., Rozenberg G.S. Fitotsenologiya. Printsipy i metody [Phytocenology: Fundamentals and Methods]. Moscow, Nauka, 1978. (in Russian); Nei M. Molecular evolutionary genetics. N.Y.: Columbia Univ. Press, 1987.; Nei M., Li W.-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76(10):5269-5273.; Probatova N.S. Myatlikovye, ili Zlaki – Poaceae Barnh. (Gramineae Juss.) Poaceae – Poaceae Barnh. Sosudistye rasteniya sovetskogo Dal’nego Vostoka [Vascular plants of the Soviet Far East]. Leningrad, 1985;1:89-382. (in Russian); Rabotnov T.A. Mosaic meadow phytocenoses. Biull. MOIP. otd. biol.=Bulletin of the Moscow Society of Naturalists. Biological Series, l. 1972;77(4):104-117. (in Russian); Takhtajan A.L. Biosystematics: the past, present and future. Botanicheskiy Zhurnal = Botanical Journal (St. Petersburg). 1970;55(3):331345. (in Russian); Tzvelev N.N. On the genus Elymus (Poaceae) in Russia. Botanicheskiy Zhurnal = Botanical Journal (St. Petersburg). 2008;93(10):15871596. (in Russian); Tzvelev N.N., Probatova N.S. The genera Elymus L., Elytrigia Desv., Agropyron Gaertn., Psathyrostachys Nevski, and Leymus Hochst. (Poaceae: Triticeae) in the Russian flora] Komarovskie chteniya [V.L. Komarov Memorial Lectures (Vladivostok)]. 2010;57:5-102. (in Russian).; van de Peer Y., de Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 1994; 10:569-570.; Zavadskij K.M. Vid i vidoobrazovanie [Species and speciation]. Leningrad, Nauka, 1968. (in Russian); https://vavilov.elpub.ru/jour/article/view/913
-
20Academic Journal