-
1Academic Journal
Authors: Hiriak, V., Savchuk, S.
Contributors: Національний університет 'Львівська політехніка', Lviv Polytechnic National University
Subject Terms: total electron content (TEC), the Earth's ionosphere, 629.78, 528.2, загальний вміст електронів (TEC), глобальні іоносферні карти (GIM), GNSS-measurement, іоносфера Землі, global ionospheric maps (GIM), GNSS-вимірювання
File Description: application/pdf; image/png
Access URL: https://ena.lpnu.ua/handle/ntb/45904
-
2Academic Journal
Authors: Dvulit, P., Dvulit, Z., Sidorov, I.
Contributors: Національний університет 'Львівська політехніка', Lviv Polytechnic National University
Subject Terms: гравітаційне поле Землі, тригонометричне нівелювання, vertical refraction, вертикальна рефракція, відхилення прямовисних ліній, 528.48, trigonometric levelling, the gravitational field of the Earth, the deviation of the vertical lines, GNSS-measurement, GNSS-вимірювання
File Description: application/pdf; image/png
Access URL: https://ena.lpnu.ua/handle/ntb/45905
-
3Academic Journal
Authors: Гіряк, І. В., Савчук, С. Г., Hiriak, V., Savchuk, S.
Contributors: Національний університет “Львівська політехніка”, Lviv Polytechnic National University
Subject Terms: загальний вміст електронів (TEC), глобальні іоносферні карти (GIM), іоносфера Землі, GNSS-вимірювання, total electron content (TEC), global ionospheric maps (GIM), the Earth’s ionosphere, GNSS-measurement, 528.2, 629.78
File Description: 5-11; application/pdf; image/png
Relation: Геодезія, картографія і аерофотознімання (89), 2019; Geodesy, cartography and aerial photography (89), 2019; ftp://cddis.gsfc.nasa.gov/gps/products/ionex/; http://www.ionolab.org/; https://cyberleninka.ru/article/n/opredeleniepolnogo-; http://commons.wikimedia.org/wiki/File:Solar_cycle_24_sunspot_number_progression_and_prediction.gif; http://openarchive.nure.ua/handle/document/4308; Afrajmovich, E. L., Astafeva, E. I., & Zhivet'ev, I. V.; (2006). Solar Activity and Global Electron content.; In Doklady earth sciences (Vol. 409, No. 2, pp. 921–924). MAIK Nauka/Interperiodica. (in Russian).; Alizadeh, M. M., Schuh, H., Todorova, S., & Schmidt, M.; (2011). Global Ionosphere Maps of VTEC from GNSS; satellite altimetry, and Formosat-3/COSMIC data.; Journal of Geodesy. 85(12), 975–987.; Alizadeh, M. M., Schuh, H., & Schmidt, M. (2015). Ray; tracing technique for global 3-D modeling of; ionospheric electron density using GNSS; measurements. Radio Science, 50(6), 539–553.; Ionospheric maps. Retrieved from ftp://cddis.gsfc.nasa.gov/gps/products/ionex/; Ionospheric Research Laboratory: IONOLAB. Retrieved; from: http://www.ionolab.org/; Feltens, J., Angling, M., Jakowski, N., Mernandez-; Pajares, M., & Zandbergen, R. (2010, January).; GNSS contribution to next generation global; ionospheric monitoring. In Beacon Satellite; Symposium.; Feltens, J., Angling, M., Jakowski, N., Mayer, C., Hoque; M, Hernández-Pajares, H., … & Aragón-Angel, A. (2009). Analysis of the state of the art ionosphere; modelling and observation techniques. (No. 1/0).; Technical Report OPS-SYS-TN-0017-OPS-GN.; Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A.; García-Rigo, A., & Orús-Pérez, R. (2017). Methodology; and consistency of slant and vertical assessments for; ionospheric electron content models. Journal of; Geodesy, 91(12), 1405–1414.; Garcia-Rigo, A., & Orús Pérez, R. (2016). Comparing; performances of seven different global VTEC; ionospheric models in the IGS context. In International; GNSS Service Workshop (IGS 2016): Sydney; Australia: february 8–12, 2016 (pp. 1–13).; International GNSS Service (IGS).; Krankowski, A., Wielgosz, P., Hernández-Pajares, M., &; García-Rigo, A. (2010). Present and future IGS; Ionospheric products. In EGU General Assembly; Conference Abstracts (Vol. 12, p. 6721).; Maslennikova, Y., & Bochkarev, V. (2014). Principal; component analysis of global maps of the total; electronic content. Geomagnetism and Aeronomy, 54(2), 216–223.; Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A.; Kotulak, K., Ghoddousi-Fard, R., Yuan, Y., . &; Feltens, J. (2018). Consistency of seven different; GNSS global ionospheric mapping techniques during; one solar cycle. Journal of Geodesy, 92(6), 691–706.; Schaer, S., Gurtner, W., & Feltens, J. (1998, February).; IONEX: The ionosphere map exchange format; version 1. In Proceedings of the IGS AC workshop; Darmstadt, Germany (Vol. 9, No. 11).; Tereshhenko, E., Milichenko, A., Shvec, M.; Chernjakov, S. M., Korableva, I. (2015). Total; electron content estimstion using satellites signals of; the Global Navigation System Glonass. Bulletin of; the Kol'sk Scientific Center of the Russian Academy; of Sciences, 1(20), 655–665. (in Russian). Retrieved; from https://cyberleninka.ru/article/n/opredeleniepolnogo-; elektronnogo-soderzhaniya-po-signalamsputnikov-; globalnoy-navigatsionnoy-sistemyglonass; The amount of sunspots of the progression. Retrieved from; Todorova, S., Hobiger, T., & Schuh H. (2008). Advances in; Space Research, 42(4), 727–736.; Wienia, R. J. (2008). Use of Global Ionospheric Maps for; Precise Point Positioning. Developing an optimised; procedure in using Global Ionospheric Maps for; single-frequency standalone positioning with GPS.; Yankiv-Vitkovska, L. (2012). Using dual-frequency GNSS; observations to determine ionosphere parameters.; Geodesy Cartography and Aerial Photography, 76, 19–28.; Zhang Q., Zhao Q., (2018). Global Ionosphere Mapping and; Differential Code Bias Estimation during Low and High; Solar Activity Periods with GIMAS Software. Remote; Sensing 10(5):705.; Zhelanov, O., & Bezsonov, Ye. (2011). Use of global ionospheric; maps in high-precision positioning tasks. Applied; electronics, 10(3), 302-306. (in Russian). Retrieved from; Hiriak V. Comparison of the measured values of total electron content (TEC) with the corresponding TEC values, obtained according to global ionopheric maps (GIM) data / V. Hiriak, S. Savchuk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 5–11.; https://ena.lpnu.ua/handle/ntb/45904
Availability: https://ena.lpnu.ua/handle/ntb/45904
-
4Academic Journal
Authors: Двуліт, П. Д., Двуліт, З. П., Сідоров, І. С., Dvulit, P., Dvulit, Z., Sidorov, I.
Contributors: Національний університет “Львівська політехніка”, Lviv Polytechnic National University
Subject Terms: тригонометричне нівелювання, GNSS-вимірювання, вертикальна рефракція, відхилення прямовисних ліній, гравітаційне поле Землі, trigonometric levelling, GNSS-measurement, vertical refraction, the deviation of the vertical lines, the gravitational field of the Earth, 528.48
File Description: 12-19; application/pdf; image/png
Relation: Геодезія, картографія і аерофотознімання (89), 2019; Geodesy, cartography and aerial photography (89), 2019; Biro, P. (1983). Time variations of height and gravity; Ak. Kiado.; Brovar, B. V., Jurkina, M. I., and oth. (2010).; Gravimetry and geodesy. Nauchnij mir.; Brovar, V. V. (1983). Gravitational field in engineering; geodesy problems. Nedra.; Ceylan, A. (2009). Determination of the deflection of; vertical components via GPS and leveling; measurement: A case study of a GPS test network in; Konya, Turkey. Scientific Research and Essay, 4; (12), 1438–1444.; Czarnecki, K. (2010). Geodezja wspolczesna. Gall.; Dvulit, P. D. (1998). Gravimetry. Lviv astronomical; geodesic partnership.; Dvulit, P. D. (2008). Physical geodesy. Expres.; Dvulit, P. D., Holubinka, Y. I. (2005). Determination of; temporal deflections by ground gravimetric data and; satellite measurements. Herald of Geodesy and; Cartography 2, 12–21.; Dvulit, P. D., Holubinka, Y. I. (2008). About; determination of gravimetric components of; deviations of vertical lines. Herald of Geodesy and; Cartography, 2, 7–9.; Eremeev, V. F., & Jurkina, M. I. (1972). Theory of; heights in the gravitational field of the Earth.; Nedra.; Heiskanen, W. A., & Moritz, H. (1981). Physical; geodesy. Graz.; Hradilek, L. (1963). Theoretische Begrundung der; Methode fur die Refraktions_ und Lotabweichungs; bestimmung auf jedem Punkte eines; trigonometrischen Hohennetres. Studia geophysica; et geodaetica, 7, 2, 118–125.; Jakovlev, N. V. (1989). Higher geodesy. Nedra.; Jordan, Eggert, Kneissl (1969). Handbuch der; Vermessungkunde. Band VI. Stuttgart.; Litynskyi, V. O., & Perii, S. S. (2006). Trigonometric; levelling in the course of geodesic networks of; condensation. Modern achievements of geodesic; science and production in Ukraine: Collection of; scientific works ZHT UTHK, II, 125–133.; Molodenskij, M. S., Eremeev, V. F., & Jurkina, M. I.; (1960). Methods of studying the external; gravitational field and the figure of the Earth.; Proceedings CNIIGAiK, 131.; Ogorodova, L. V. (2006). Higher geodesy. Geodezkartizdat.; Torge, W. (1989). Gravimetry. Walter de Gruyter.; Tretiak, K. R., & Sidorov, I. S. (2005). Optimization of; the construction of the geodesic network of the; Dniester HPSS by satellite radionavigation; technologies. Modern achievements of geodesic; science and production, 207–219.; Tretyak, K., Periy, S., Sidorov, I., & Babiy, L. (2015).; High accuracy satellite and field measurements of; horizontal and vertical displacements of control; geodetic network on Dniester Hydroelectric Pumped; Power Station (HPPS). Geomatics and; environmental engineering, 1, 83–96.; Dvulit P. Determination of plumb lines with using trigonometric levelling and GNSS measurements / P. Dvulit, Z. Dvulit, I. Sidorov // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 12–19.; https://ena.lpnu.ua/handle/ntb/45905
Availability: https://ena.lpnu.ua/handle/ntb/45905