Εμφανίζονται 1 - 9 Αποτελέσματα από 9 για την αναζήτηση '"F-фтордезоксиглюкоза"', χρόνος αναζήτησης: 0,50δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Medical Visualization; Том 27, № 4 (2023); 124-137 ; Медицинская визуализация; Том 27, № 4 (2023); 124-137 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1354/850; https://medvis.vidar.ru/jour/article/downloadSuppFile/1354/2135; https://medvis.vidar.ru/jour/article/downloadSuppFile/1354/2136; Adams T.S., Rogers L.J., Cuello M.A. Cancer of the vagina: 2021 update. Int. J. Gynecol. Obstet. 2021; 155 (Suppl. 1): 19– 27. https://doi.org/10.1002/ijgo.13867; Sinno A.K., Saraiya M., Thompson T.D. et al. Human papillomavirus genotype prevalence in invasive vaginal cancer from a registry-based population. Obstet. Gynecol. 2014; 123 (4): 817–821. https://doi.org/10.1097/AOG.0000000000000171; Солопова А.Г., Москвичёва В.С., Блбулян Т.А., Шкода А.С., Макацария А.Д. Актуальные вопросы профилактики, диагностики и лечения рака вульвы и влагалища. Акушерство, гинекология и репродукция. 2018; 12 (4): 62–70. https://doi.org/10.17749/2313-7347.2018.12.4. 062-070; Guo L., Li C., Hua K. Occult vaginal cancer recurrence after hysterectomy: a case report and literature review. J. Int. Med. Res. 2020; 48 (12): 300060520973901. https://doi.org/10.1177/0300060520973901; Donati O.F., Lakhman Y., Sala E. et al. Role of preoperative MR imaging in the evaluation of patients with persistent or recurrent gynaecological malignancies before pelvic exenteration. Eur. Radiol. 2013; 23 (10): 2906–2915. https://doi.org/10.1007/s00330-013-2875-1; Каприн А.Д., Старинский В.В., Шахзадова А.О. Состояние онкологической помощи населению России в 2021 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ “НМИЦ радиологии” Минздрава России, 2022. 239 с. ISBN 978-5-85502-275-9; Клинические рекомендации, одобренные научным советом МЗ РФ. Злокачественные новообразования влагалища, 2020. https://www.cancer.org/research/cancer-factsstatistics/all-cancer-facts-figures/cancer-factsfigures-2020.html; American Cancer Society. Cancer Facts and Figures 2020. Atlanta, Ga: American Cancer Society; 2020. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.htm; Аксенова С.П., Солодкий В.А., Нуднов Н.В., Крейнина Ю.М., Котляров П.М., Сергеев Н.И., Ребрикова В.А., Мурзина А.А. Магнитно-резонансная томография в диагностике опухолевого поражения влагалища (по материалам методических рекомендаций). Вестник научного центра рентгенорадиологии. 2022; 22 (2). http://vestnik.rncrr.ru/vypusk/vypusk22/?ELEMENT_ID=71; Казумова А.А. Ультразвуковая диагностика опухолей влагалища и вульвы: Дис. … канд. мед. наук. Обнинск, 2010. 101 c.; Pozzati F., Moro F., Leombroni M. et al. Clinical and ultrasound characteristics of vaginal lesions. Int. J. Gynecol. Cancer. 2021; 31 (1): 45–51. https://doi.org/10.1136/ijgc-2020-001651; Fischerova D., Garganese G., Reina H. et al. Terms, definitions and measurements to describe sonographic features of lymph nodes: consensus opinion from the Vulvar International Tumor Analysis (VITA) group. Ultrasound Obstet. Gynecol. 2021; 57 (6): 861–879. https://doi.org/10.1002/uog.23617; Faria S., Devine C., Viswanathan C. et al. FDG-PET assessment of other gynecologic cancers. PET Clin. 2018; 13 (2): 203–223. https://doi.org/10.1016/j.cpet.2017.11.006; Robertson N.L., Hricak H., Sonoda Y. et al. The impact of FDG-PET/CT in the management of patients with vulvar and vaginal cancer. Gynecol. Oncol. 2016; 140 (3): 420–424. https://doi.org/10.1016/j.ygyno.2016.01.011; Gouveia P., Sá Pinto A., Violante L. et al. 18F-FDG PET/CT in Patients with Vulvar and Vaginal Cancer: A Preliminary Study of 20 Cases. Acta Med. Port. 2022; 35 (3): 170–175. https://doi.org/10.20344/amp.12510; Sadowski E.A., Pirasteh A., McMillan A.B. et al. PET/MR imaging in gynecologic cancer: tips for differentiating normal gynecologic anatomy and benign pathology versus cancer. Abdom. Radiol. (NY). 2022; 47 (9): 3189–3204. https://doi.org/10.1007/s00261-021-03264-9; Kilcoyne A., Gottumukkala R.V., Kang S.K. et al.; Expert Panel on GYN and OB Imaging. ACR Appropriateness Criteria® Staging and Follow-up of Primary Vaginal Cancer. J. Am. Coll. Radiol. 2021; 18: S442–S455. https://doi.org/10.1016/j.jacr.2021.08.011; Shetty A.S. Menias C.O. MR imaging of vulvar and vaginal cancer. Magn. Reson. Imaging Clin. N. Am. 2017; 25: 481–502. https://doi.org/10.1016/j.mric.2017.03.013; Ferreira D.M. Bezerra R.O.F. Ortega C.D. et al. Magnetic resonance imaging of the vagina: an overview for radiologists with emphasis on clinical decision making. Radiol. Bras. 2015; 48: 249–259. https://doi.org/10.1590/0100-3984.2013.1726; Parikh J.H., Barton D.P., Ind T.E., Sohaib S.A. MR imaging features of vaginal malignancies. Radiographics. 2008; 28 (1): 49–63; quiz 322. https://doi.org/10.1148/rg.281075065; Аксенова С.П., Нуднов Н.В., Солодкий В.А. Поиск оптимального МР-протокола для диагностики опухолевого поражения влагалища. Вестник рентгенологии и радиологии. 2022; 103 (4–6): 58–70. https://doi.org/10.20862/0042-4676-2022-103-4-6-58-70; Manganaro L., Lakhman Y., Bharwani N. et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur. Radiol. 2021; 31 (10): 7802–7816. https://doi.org/10.1007/s00330-020-07632-9. Epub 2021 Apr 14. Erratum in: Eur Radiol. 2021 Jun 17.; Proscia N., Jaffe T.A., Neville A.M. et al. MRI of the pelvis in women: 3D versus 2D T2-weighted technique. Am. J. Roentgenol. 2010; 195 (1): 254–259. https://doi.org/10.2214/ajr.09.3226; Alt C.D., Bharwani N., Danza F.M. et al. ESUR Quick Guide to Female Pelvis Imaging. 2019; https://www.researchgate.net/publication/334725882_ESUR_Quick_Guide_to_Female_Pelvis_Imaging; Bhardwaj R., Boruah D.K., Gogoi B.B. et al. Added-Value of Diffusion-Weighted Imaging (DWI) and Dynamic Contrast-Enhanced (DCE-MRI) Magnetic Resonance Imaging in the Preoperative Assessment of Cervical Cancer. J. Obstet. Gynaecol. India. 2022; 72 (4): 330–340. https://doi.org/10.1007/s13224-021-01488-9; Chow L., Tsui B.Q., Bahrami S. et al. Gynecologic tumor board: a radiologist's guide to vulvar and vaginal malignancies. Abdom. Radiol. (NY). 2021; 46 (12): 5669–5686. https://doi.org/10.1007/s00261-021-03209-2; Lamoreaux W.T., Grigsby P.W., Dehdashti F. et al. FDG-PET evaluation of vaginal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2005; 62 (3): 733–737. https://doi.org/10.1016/j.ijrobp.2004.12.011; Brar H., May T., Tau N. et al. Detection of extra-regional tumour recurrence with 18F-FDG-PET/CT in patients with recurrent gynaecological malignancies being considered for radical salvage surgery. Clin. Radiol. 2017; 72 (4): 302–306. https://doi.org/10.1016/j.crad.2016.12.009; ACR–SABI–SAR–SPR Practice parameter for the performance of computed tomography (CT) of the abdomen and computed tomography (CT) of the pelvis. Practice parameter. CT abdomen CT pelvis. revised 2021 (resolution 46); Burton C.S., Frey K., Fahey F. et al. Fetal Dose from PET and CT in Pregnant Patients. J. Nucl. Med. 2023; 64 (2): 312–319. https://doi.org/10.2967/jnumed.122.263959; NCCN Clinical Practice Guidelines in Oncology. Cervical cancer. Version 1.2020. Available at. https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf; Nout R., Calaminus G., Planchamp F. et al. ESTRO/ESGO/ SIOPe guidelines for the management of patients with vaginal cancer. Radiother Oncol. 2023 Sep;186:109662. https://doi.org/10.1016/j.radonc.2023.109662; Friedman S.N., Itani M., Dehdashti F. PET Imaging for Gynecologic Malignancies. Radiol. Clin. N. Am. 2021; 59 (5): 813–833. https://doi.org/10.1016/j.rcl.2021.05.011; Gardner C.S., Sunil J., Klopp A.H. et al. Primary vaginal cancer: role of MRI in diagnosis, staging and treatment. Br. J. Radiol. 2015; 88 (1052): 20150033. https://doi.org/10.1259/bjr.20150033; Коржевская Е.В., Кузнецов В.В., Грицай А.Н. Злокачественные опухоли влагалища. Клиническая онкогинекология: Руководство для врачей / Под ред. В.П. Козаченко. 2-е изд., перераб. и доп. М.: Издательство Бином, 2016: 97–108.; Choi H.J., Ju W., Myung S.K., Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci. 2010; 101 (6): 1471–1479. https://doi.org/10.1111/j.1349-7006.2010.01532.x; Albuquerque K.S., Zoghbi K.K., Gomes N.B.N. et al. Vaginal cancer: Why should we care? Anatomy, staging and in-depth imaging-based review of vaginal malignancies focusing on MRI and PET/CT. Clin. Imaging. 2022; 84: 65–78. https://doi.org/10.1016/j.clinimag.2022.01.009; Garganese G., Collarino A., Fragomeni S.M. et al. Groin sentinel node biopsy and 18F-FDG PET/CT-supported preoperative lymph node assessment in cN0 patients with vulvar cancer currently unfit for minimally invasive inguinal surgery: The GroSNaPET study. Eur. J. Surg. Oncol. 2017; 43 (9): 1776-1783. https://doi.org/10.1016/j.ejso.2017.06.018; https://medvis.vidar.ru/jour/article/view/1354

  2. 2
    Academic Journal

    Πηγή: Medical Visualization; Том 27, № 3 (2023); 152-161 ; Медицинская визуализация; Том 27, № 3 (2023); 152-161 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1343/835; https://medvis.vidar.ru/jour/article/downloadSuppFile/1343/2114; Howlader N., Noone A.M., Krapcho M. et al. SEER Cancer Statistics Review. 1975–2016. https://seer.cancer.gov/csr/1975_2016/. Accessed April 9, 2020.; Kobe C., Dietlein M., Franklin J. et al. Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced stage Hodgkin lymphoma. Blood. 2008; 112: 3989–3994. https://doi.org/10.1182/blood-2008-06-155820; Weihrauch M.R., Re D., Bischoff S. et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin's disease. Ann. Hematol. 2002; 81: 20–5. https://doi.org/10.1007/s00277-001-0390-y; Gallamini A., Rigacci L., Merli F. et al. The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin's disease. Haematologica. 2006; 91: 475–481. PMID: 16585014; Gallamini A., Hutchings M., Rigacci L. et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin's lymphoma: a report from a joint Italian-Danish study. J. Clin. Oncol. 2007; 25: 3746–3752. https://doi.org/10.1200/jco.2007.11.6525; Lister T.A., Crowther D., Sutcliffe S.B. et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J. Clin. Oncol. 1989; 7 (11): 1630–1636. https://doi.org/10.1200/jco.1989.7.11.1630; Демина Е.А., Тумян Г.С., Унукова Е.Н., Кондратьева Н.Е., Бородкина А.Г., Зайцева Т.И., Мелузова О.М., Ширяев С.В. Современные возможности лечения первичных больных лимфомой Ходжкина и причины неудач лечения. Онкогематология. 2007; 2: 24–30. https://doi.org/10.17650/1818-8346-2007-0-2-24-30; Mhlanga J., Chirindel A., Lodge M. et al. Quantitative PET/ CT in clinical practice: assessing the agreement of PET tumor indices using different clinical reading platforms. Nucl. Med. Commun. 2018; 39 (2): 154–160. https://doi.org/10.1097/mnm.0000000000000786; Brito A., Mourato F., Santos A. et al. Validation of the Semiautomatic Quantification of 18F-Fluoride PET/CT Whole-Body Skeletal Tumor Burden. J. Nucl. Med. Technol. 2018; 46 (4): 378–383. https://doi.org/10.2967/jnmt.118.211474; Martín-Saladich Q., Reynés-Llompart G., Sabaté-Llobera A. et al. Comparison of different automatic methods for the delineation of the total metabolic tumor volume in I–II stage Hodgkin Lymphoma. Sci. Rep. 2020; 10 (1). https://doi.org/10.1038/s41598-020-69577-9; Barrington S.F., Meignan M.A. Time to prepare for risk adaptation in lymphoma by standardising measurement of metabolic tumour burden. J. Nucl. Med. 2019; 60 (8): 1096–1102. https://doi.org/10.2967/jnumed.119.227249; Kostakoglu L., Chauvie S. Metabolic Tumor Volume Metrics in Lymphoma. Semin. Nucl. Med. 2018; 48 (1): 50–66. https://doi.org/10.1053/j.semnuclmed.2017.09.005; Akhtari M., Milgrom S., Pinnix C. et al. Reclassifying patients with early-stage Hodgkin lymphoma based on functional radiographic markers at presentation. Blood. 2018; 131 (1): 84–94. https://doi.org/10.1182/blood-2017-04-773838; Im H.J., Solaiyappan M., Lee I. et al. Multi-level Otsu method to define metabolic tumor volume in positron emission tomography. Am. J. Nucl. Med. Mol. Imaging. 2018; 8: 373–386. PMID: 30697457; Salavati A., Duan F., Snyder B.S. et al. Optimal FDG PET/ CT volumetric param- eters for risk stratification in patients with locally advanced non-small cell lung cancer: results from the ACRIN 6668/RTOG 0235 trial. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44: 1969–1983. https://doi.org/10.1007/s00259-017-3753-x; Albano D., Mazzoletti A., Spallino M. et al. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in elderly HL: a two-center experience in 123 patients. Ann. Hematol. 2020; 99: 1321–1330. https://doi.org/10.1007/s00277-020-04039-w; Kanoun S., Tal I., Berriolo-Riedinger A. et al. Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F] FDG PET to Predict Survival in Hodgkin Lymphoma. PLoS One. 2015; 10 (10): e0140830. https://doi.org/10.1371/journal.pone.0140830; Wang X., Zhao Y., Liu Y. et al. Prognostic value of metabolic variables of [18F] FDG PET/CT in surgically resected stage I lung adenocarcinoma. Medicine (Baltimore). 2017; 96 (35): e7941. https://doi.org/10.1097/md.0000000000007941; Tamandl D., Fueger B., Haug A. et al. Diagnostic Algorithm That Combines Quantitative 18F-FDG PET Parameters and Contrast-Enhanced CT Improves Posttherapeutic Locoregional Restaging and Prognostication of Survival in Patients With Esophageal Cancer. Clin. Nucl. Med. 2019; 44 (1): e13–e21. https://doi.org/10.1097/rlu.0000000000002366; Choi W., Oh J., Roh J. et al. Metabolic tumor volume and total lesion glycolysis predict tumor progression and survival after salvage surgery for recurrent oral cavity squamous cell carcinoma. Head Neck. 2019; 41 (6): 1846–1853. https://doi.org/10.1002/hed.25622; Moskowitz A., Schöder H., Gavane S. et al. Prognostic significance of baseline metabolic tumor volume in relapsed and refractory Hodgkin lymphoma. Blood. 2017; 130 (20): 2196–2203. https://doi.org/10.1182/blood-2017-06-788877; Cottereau A.S., Versari A., Loft A. et al. Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial. Blood. 2018; 131 (13): 1456–1463. https://doi.org/10.1182/blood-2017-07-795476; Асланиди И.П., Метелкина М.В., Мухортова О.В., Пурсанова Д.М., Шурупова И.В., Манукова В.А. Объемные ПЭТ-биомаркеры при лимфоме Ходжкина. Первый опыт автоматического и ручного методов оценки. REJR. 2022; 12 (1): 80–88. https://doi.org/10.21569/2222-7415-2022-12-1-80-88; Метелкина М.В., Мухортова О.В., Асланиди И.П., Пурсанова Д.М., Манукова В.А., Шурупова И.В., Трифонова Т.А., Саржевский В.О., Шорохов Н.С., Шпирко В.О. Прогностическое значение общего метаболического объема опухоли (MTV) и общего уровня гликолиза (TLG) при классической лимфоме Ходжкина с использованием автоматического метода выделения патологических очагов. REJR. 2022; 12 (4): 106–117. https://doi.org/10.21569/2222-7415-2022-12-4-106-116; Song M.K., Chung J.S., Lee J.J. et al. Metabolic tumor volume by positron emission tomography/computed tomography as a clinical parameter to determine therapeutic modality for early stage Hodgkin’s lymphoma. Cancer Sci. 2013; 104 (12): 1656–1661. https://doi.org/10.1111/cas.12282; Im H., Bradshaw T., Solaiyappan M., Cho S. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl. Med. Mol. Imaging. 2017; 52 (1): 5–15. https://doi.org/10.1007/s13139-017-0493-6; Camacho M.R., Etchebehere E., Tardelli N. et al. Validation of a Multi-Foci Segmentation Method for Measuring Metabolic Tumor Volume in Hodgkin’s Lymphoma. J. Nucl. Med. Technol. 2020; 48 (1): 30–35. https://doi.org/10.2967/jnmt.119.231118; https://medvis.vidar.ru/jour/article/view/1343

  3. 3
    Academic Journal

    Πηγή: Medical Visualization; Том 28, № 1 (2024); 141-156 ; Медицинская визуализация; Том 28, № 1 (2024); 141-156 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1341/854; FIGO Committee on Gynecologic Oncology. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynaecol. Obstet. 2009; 105 (2): 103–104. http://doi.org/10.1016/j.ijgo.2009.02.012; FIGO Committee on Gynecologic Oncology. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019; 145 (1): 129–135. http://doi.org/10.1002/ijgo.12749; Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet. 2018; 143 (Suppl. 2): 22–36. http://doi.org/10.1002/ijgo.12611; Berek J.S., Matsuo K., Grubbs B.H. et al. Multidisciplinary perspectives on newly revised 2018 FIGO staging of cancer of the cervix uteri. J. Gynecol. Oncol. 2019; 30 (2): e40. http://doi.org/10.3802/jgo.2019.30.e40; Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Corrigendum to “Revised FIGO staging for carcinoma of the cervix uteri”. Int. J. Gynecol. Obstet. 2019; 145: 129–135. http://doi.org/10.1002/ijgo.12969; Lee S.I., Atri M. 2018 FIGO staging system for uterine cervical cancer: enter cross-sectional imaging. Radiology. 2019; 292 (1): 15–24. http://doi.org/10.1148/radiol.2019190088; Olawaiye A.B., Baker T.P., Washington M.K., Mutch D.G. The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer. CA Cancer J. Clin. 2021; 71 (4): 287–298. http://doi.org/10.3322/caac.21663; FIGO CANCER REPORT 2021 Cancer of the cervix uteri: 2021 update International Journal of Obstetrics and Gynaecology. 155 (S1). Special Issue: FIGO Cancer Report 2021 October: 28–44. https://doi.org/10.1002/ijgo.13967; Клинические рекомендации, одобренные научным советом МЗ РФ, Рак шейки матки, 2020 г. 48 с. https://oncology.ru/specialist/treatment/references/actual/537.pdf?ysclid=lp6m9w7k57670993368; Tian Y., Luo H. Diagnostic accuracy of transvaginal ultrasound examination for local staging of cervical cancer: a systematic review and meta-analysis. Med. Ultrason. 2022; 24 (3): 348–355. http://doi.org/10.11152/mu-3246; Cibula D., Pötter R., Planchamp F. et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer. Int. J. Gynecol. Cancer. 2018; 28 (4): 641–655. http://doi.org/10.1097/IGC.0000000000001216; Marth C., Landoni F., Mahner S. et al.; ESMO Guidelines Committee. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017; 28 (Suppl_4): iv72–iv83. http://doi.org/10.1093/annonc/mdx220; Chino J., Annunziata C.M., Beriwal S. et al. Radiation Therapy for Cervical Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2020; 10 (4): 220–234. http://doi.org/10.1016/j.prro.2020.04.002; Hricak H., Gatsonis C., Chi D.S. et al. Role of imaging in pretreatment evaluation of early invasive cervical cancer: results of the intergroup study American College of Radiology Imaging Network 6651-Gynecologic Oncology Group 183. J. Clin. Oncol. 2005; 23 (36): 9329–9337. http://doi.org/10.1200/JCO.2005.02.0354; Xiao M., Yan B., Li Y. et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis. Eur. Radiol. 2020; 30 (3): 1405–1418. http://doi.org/10.1007/s00330-019-06461-9; Thomeer M.G., Gerestein C., Spronk S. et al. Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma:systematic review and meta-analysis. Eur. Radiol. 2013; 23: 2005–2018. http://doi.org/10.1007/s00330-013-2783-4; Manganaro L., Lakhman Y., Bharwani N. et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur. Radiol. 2021; 31 (10): 7802–7816. http://doi.org/10.1007/s00330-020-07632-9. Erratum in: Eur. Radiol. 2021 Jun 17. PMID: 33852049; Bourgioti C., Chatoupis K., Moulopoulos L.A. Current imaging strategies for the evaluation of uterine cervical cancer. Wld J. Radiol. 2016; 8 (4): 342–354. http://doi.org/10.4329/wjr.v8.i4.342; Nogami Y., Iida M., Banno K. et al. Application of FDG-PET in cervical cancer and endometrial cancer: utility and future prospects. Anticancer Res. 2014; 34 (2): 585–592. PMID: 24510987; Mirpour S., Mhlanga J., Logeswaran P. et al. The role of PET/CT in the management of cervical cancer. Am. J. Roentgenol. 2013; 201 (2): W192–205. http://doi.org/10.2214/AJR.12.9830; Choi H.J., Ju W., Myung S.K., Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci. 2010; 101 (6): 1471–1479. http://doi.org/10.1111/j.1349-7006.2010.01532.x; Liu B., Gao S., Li S. A comprehensive comparison of CT, MRI, positron emission tomography or positron emission tomography/ CT, and diffusion weighted imaging-MRI for detecting the lymph nodes metastases in patients with cervical cancer: a metaanalysis based on 67 studies. Gynecol. Obstet Invest. 2017; 82 (3): 209–222. http://doi.org/10.1159/000456006; Ruan J., Zhang Y., Ren H. Meta-analysis of PET/CT Detect Lymph Nodes Metastases of Cervical Cancer. Open Med. (Wars.) 2018; 13: 436–442. http://doi.org/10.1515/med-2018-0065; Young P., Daniel B., Sommer G. et al. Intravaginal gel for staging of female pelvic cancers–preliminary report of safety, distention, and gel-mucosal contrast during magnetic resonance examination. J. Comput. Assist. Tomogr. 2012; 36 (2): 253–256. http://doi.org/10.1097/RCT.0b013e3182483c05; Van Hoe L., Vanbeckevoort D., Oyen R. et al. Cervical carcinoma: optimized local staging with intravaginal contrast-enhanced MR imaging–preliminary results. Radiology. 1999; 213 (2): 608–611. http://doi.org/10.1148/radiology.213.2.r99oc23608; Akata D., Kerimoglu U., Hazirolan T. et al. Efficacy of transvaginal contrast-enhanced MRI in the early staging of cervical carcinoma. Eur. Radiol. 2005; 15 (8): 1727–1733. https://doi.org/10.1007/s00330-005-2645-9; Li X., Wang L., Li Y., Song P. The value of diffusionweighted imaging in combination with conventional magnetic resonance imaging for improving tumor detection for early cervical carcinoma treated with fertility-sparing surgery. Int. J. Gynecol. Cancer. 2017; 27 (8):1761–1768. http://doi.org/10.1097/IGC.0000000000001113; Woo S., Moon M.H., Cho J.Y. et al. Diagnostic performance of MRI for assessing parametrial invasion in cervical cancer: a head-to-head comparison between oblique and true axial T2-weighted images. Korean J. Radiol. 2019; 20 (3): 378–384. http://doi.org/10.3348/kjr.2018.0248; Hori M., Kim T., Onishi H. et al Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T-initial experience. Radiology. 2011; 258 (1): 154–163. http://doi.org/10.1148/radiol.10100866; Hwang J., Hong S.S., Kim H.J. et al. Reduced field-of-view diffusion-weighted MRI in patients with cervical cancer. Br. J. Radiol. 2018; 91 (1087): 20170864. http://doi.org/10.1259/bjr.20170864; Huang J.-W., Song J.-C., Chen T. et al. Making the invisible visible: improving detectability of MRI-invisible residual cervical cancer after conisation by DCE-MRI. Clin. Radiol. 2019; 74 (2): 166.e15–166.e21. http://doi.org/10.1016/j.crad.2018.10.013; Bermudez A., Bhatla N., Leung E. FIGO cancer report 2015. Cancer of the cervix uteri. Int. J. Gynecol. Obstet. 2015; 131: S88–95. http://doi.org/10.1016/j.ijgo.2015.06.004; Bentivegna E., Gouy S., Maulard A. et al. Oncological outcomes after fertility-sparing surgery for cervical cancer: a systematic review. Lancet Oncol. 2016; 17 (6): e240–e253. http://doi.org/10.1016/S1470-2045(16)30032-8; Zhang Q., Li W., Kanis M.J. et al. Oncologic and obstetrical outcomes with fertility-sparing treatment of cervical cancer: a systematic review and meta-analysis. Oncotarget. 2017; 8 (28): 46580–46592. http://doi.org/10.18632/oncotarget.16233; Bentivegna E., Maulard A., Pautier P. et al. Fertility results and pregnancy outcomes after conservative treatment of cervical cancer: a systematic review of the Literature. Fertil Steril. 2016; 106 (5): 1195–1211.e5. https://doi.org/10.1016/j.fertnstert.2016.06.032; Koh W.J., Abu-Rustum N.R., Bean S. et al. Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2019; 17 (1): 64–84. http://doi.org/10.6004/jnccn.2019.0001; Engin G. Cervical cancer: MR imaging findings before, during, and after radiation therapy. Eur. Radiol. 2006; 16 (2): 313–324. http://doi.org/10.1007/s00330-005-2804-z; Hricak H., Yu K.K. Radiology in invasive cervical cancer. Am. J. Roentgenol. 1996; 167: 1101–1108. http://doi.org/10.2214/ajr.167.5.8911159; Lakhman Y., Akin O., Park K.J. et al. Stage IB1 cervical cancer: role of preoperative MR imaging in selection of patients for fertility-sparing radical trachelectomy. Radiology. 2013; 269 (1): 149–158. https://doi.org/10.1148/radiol.13121746; Noël P., Dubé M., Plante M., St-Laurent G. Early cervical carcinoma and fertility-sparing treatment options: MR imaging as a tool in patient selection and a follow-upmodality. Radiographics. 2014; 34 (4): 1099–1119. https://doi.org/10.1148/rg.344130009; Downey K., Attygalle A.D., Morgan V.A. et al. Comparison of optimised endovaginal vs external array coil T2-weighted and diffusion-weighted imaging techniques for detecting suspected early stage (IA/IB1) uterine cervical cancer. Eur. Radiol. 2016; 26 (4): 941–950. http://doi.org/10.1007/s00330-015-3899-5; DeSouza N.M., Rockall A., Freeman S. Functional MR imaging in gynecologic cancer. Magn. Reson. Imaging Clin. N. Am. 2016; 24 (1): 205–222. http://doi.org/10.1016/j.mric.2015.08.008; Woo S., Suh C.H., Kim S.Y. et al. Magnetic resonance imaging for detection of parametrial invasion in cervical cancer: an updated systematic review and meta-analysis of the literature between 2012 and 2016. Eur. Radiol. 2018; 28 (2): 530–541. http://doi.org/10.1007/s00330-017-4958-x; Park J.J., Kim C.K., Park S.Y., Park B.K. Parametrial invasion in cervical cancer: fused T2-weighted imaging and high-b-value diffusion-weighted imaging with background body signal suppression at 3 T. Radiology. 2015; 274 (3): 734–741. http://doi.org/10.1148/radiol.14140920; Sala E., Rockall A.G., Freeman S.J. et al. The Added Role of MR Imaging in Treatment Stratification of Patients with Gynecologic Malignancies: What the Radiologist Needs to Know. Radiology. 2013; 266: 717–740. http://doi.org/10.1148/radiol.12120315; Raithatha A., Papadopoulou I., Stewart V. et al. Cervical cancer staging: a resident’s primer: women’s imaging. Radiographics. 2016; 36 (3): 933–934. http://doi.org/10.1148/rg.2016150173; Eisenhauer E.A., Therasse P., Bogaerts J. et. al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 2009; 45 (2): 228–247. http://doi.org/10.1016/j.ejca.2008.10.026; Zhang A., Song J., Ma Z., Chen T. Application of apparent diffusion coefficient values derived from diffusion-weighted imaging for assessing different sized metastatic lymph nodes in cervical cancers. Acta Radiol. 2020; 61 (6): 848–855. https://doi.org/10.1177/0284185119879686; Qi Y.F., He Y.L., Lin C.Y. et al. Diffusion-weighted imaging of cervical cancer: Feasibility of ultra-high b-value at 3T. Eur. J. Radiol. 2020; 124: 108779. http://doi.org/10.1016/j.ejrad.2019.108779; Elsholtz F.H.J., Asbach P., Haas M. et al. Introducing the Node Reporting and Data System 1.0 (Node-RADS): a concept for standardized assessment of lymph nodes in cancer. Eur. Radiol. 2021; 31 (8): 6116–6124. https://doi.org/10.1007/s00330-020-07572-4; Wong T.Z., Jones E.L., Coleman R.E. Positron emission tomography with 2-deoxy-2-[(18)F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol. Imaging Biol. 2004; 6 (1): 55–62. http://doi.org/10.1016/j.mibio.2003.12.004; Hameeduddin A., Sahdev A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging. 2015; 15 (1): 3. http://doi.org/10.1186/s40644-015-0037-1; Young H., Baum R., Cremerius U. et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer. 1999; 35 (13): 1773–1782. http://doi.org/10.1016/s0959-8049(99)00229-4; Wang X., Koch S. Positron emission tomography/ computed tomography potential pitfalls and artifacts. Curr. Probl. Diagn. Radiol. 2009; 38 (4): 156–169. http://doi.org/10.1067/j.cpradiol.2008.01.001; Amit A., Person O., Keidar Z. FDG PET/CT in monitoring response to treatment in gynecological malignancies. Curr. Opin. Obstet. Gynecol. 2013; 25 (1): 17–22. http://doi.org/10.1097/GCO.0b013e32835a7e96; American College of Radiology ACR Appropriateness Criteria: Pretreatment Planning of Invasive Cancer of the Cervix. https://acsearch.acr.org/docs/69461/Narrative/; Moore K.N., Herzog T.J., Lewin S. et al. A comparison of cisplatin/paclitaxel and carboplatin/paclitaxel in stage IVB, recurrent or persistent cervical cancer. Gynecol. Oncol. 2007; 105 (2): 299–303. http://doi.org/10.1016/j.ygyno.2006.12.031; Lorusso D., Petrelli F., Coinu A. et al. A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol. 2014; 133 (1): 117–123. http://doi.org/10.1016/j.ygyno.2014.01.042; Bodurka-Bevers D., Morris M., Eifel P.J. et al. Posttherapy surveillance of women with cervical cancer: an outcomes analysis. Gynecol. Oncol. 2000; 78 (2): 187–193. http://doi.org/10.1006/gyno.2000.5860.; Scottish Intercollegiate Guidelines Network. Management of cervical cancer/ (SIGN guideline no 99) 2008; National Comprehensive Cancer Network (NCCN) guidelines for cervical cancer/ 2022; https://medvis.vidar.ru/jour/article/view/1341

  4. 4
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 12, № 2 (2022); 123-131 ; Опухоли головы и шеи; Том 12, № 2 (2022); 123-131 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/783/537; Stout A.P., Murray M.R. Hemangiopericytoma. A vascular tumor featuring Zimmerman's pericytes. Ann Surg 1942;116(1):26-33. DOI:10.1097/00000658-194207000-00004.; Louis D.N., Perry A., Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica 2016;131(6):803-20. DOI:10.1007/s00401-016-1545-1.; Ouladan Sh., Trautmann M., Orouji E. et al. Differential diagnosis of solitary fibrous tumors: A study of 454 soft tissue tumors indicating the diagnostic value of nuclear STAT6 relocation and ALDH1 expression combined with in situ proximity ligation assay. Int J Oncol 2015;46(6):2595-605. DOI:10.3892/ijo.2015.2975.; Gold J.S., Antonescu C.R., Hajdu C. et al. Clinicopathologic correlates of solitary fibrous tumors. Cancer 2002;15;94(4):1057-68. DOI:10.1002/cncr.10328.; Bruzzone A., Varaldo M., Ferrarazzo C. et al. Solitary fibrous tumor. Rare Tumors 2010;2(4):e64. DOI:10.4081/rt.2010.e64.; Enzinger F.M., Smith B.H. Hemangiopericytoma. An analysis of 106 cases. Hum Pathol 1976;7(1):61-82. DOI:10.1016/s0046-8177(76)80006-8.; Cardoso B.B., Moreira D.P., de Assis Fernandes Tavares F. Management of patients with hemangiopericytoma: case report and literature review. Am J Health Res 2019;7(2):24-30. DOI:10.11648/j.ajhr.20190702.12.; Hayenga H.N., Bishop A.J., Wardak Z. et al. Intraspinal dissemination and local recurrence of an intracranial hemangiopericytoma. World Neurosurg 2019;123:6'-75. DOI:10.1016/j. wneu.2018.11.173.; Феденко А.А., Бохян А.Ю., Горбунова В.А. и др. Практические рекомендации по лекарственному лечению сарком мягких тканей. Рекомендации Восточно-Европейской группы по изучению сарком. Злокачественные опухоли. 2020;10(3s2-1):296-305. DOI:10.18027/2224-5057-2017-7-3s2-216-224.; Abd-Ellah M.K., Awad A.I., Ashraf A.M. et al. A review on brain tumor diagnosis from MRI images: practical implications, key achievements, and lessons learned. Magn Reson Imaging2019;61:300-18. DOI:10.1016/j.mri.2019.05.028.; Horska A., Barker P.B. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin North Am 2010;20(3):293-310. DOI:10.1016/j.nic.2010.04.003.; Sawlani V., Patel M.D., Davies N. et al. Multiparametric MRI: practical approach and pictorial review of a useful tool in the evaluation of brain tumours and tumourlike lesions. Insights Imaging 2020;11(89):19. DOI:10.1186/s13244-020-00888-1.; Пронин И.Н. Фадеева Л.М., Захарова Н.Е. и др. Перфузионная КТ: исследование мозговой гемодинамики в норме. Медицинская визуализация 2007;3:8-14.; Lovblad K-O., Bouchez L., Altrichter S. PET-CT in neuroradiology. Clin Transl Neurosci 2019;3(2):13. DOI:10.1177/2514183X19868147.; Lasocki A., Hicks R.J. How we read: the combined use of MRI and novel PET tracers for the characterisation and treatment planning of masses in neurooncology. Cancer Imaging 2019;19:57. DOI:10.1186/s40644-019-0241-5.; Albert N.L., Weller M., Suchorska B. et al. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 2016;18(9):1199-208. DOI:10.1093/neuonc/now058.; Hara T., Kosaka N., Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med1998;39(6):990-5.; Gibellini F., Smith T.K. The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 2010;62(6): 414-428. DOI:10.1002/iub.337.; https://ogsh.abvpress.ru/jour/article/view/783

  5. 5
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 9, № 3 (2019); 49-60 ; Опухоли головы и шеи; Том 9, № 3 (2019); 49-60 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2019-9-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/422/389; Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена, 2018. 250 с. Доступно по: http://www.oncology.ru/service/statistics/malignant_tumors/2017.pdf.; PET/CT in head and neck cancer. Ed. by Wai Lup Wong. Springer International Publishing, 2018. DOI:10.1007/978-3-319-61440-3.; MR imaging of the body. Ed. by E.J. Rummeny, P. Reimer, W. Heindel. Stuttgart; New York: Thieme, 2009. 1856 p.; Wong W.L., Sonoda L.I., Gharpurhy A. et al. 18 F-fluorodeoxyglucose positron emission tomography/computed tomography in the assessment of occult primary head and neck cancers – an audit and review of published studies. Clin Oncol (R Coll Radiol) 2012;24(3):190–5. DOI:10.1016/j.clon.2011.11.001.; Алиева С.Б., Алымов Ю.В., Кропотов М.А. и др. Клинические рекомендации по диагностике и лечению плоскоклеточного рака головы и шеи. М., 2014. Доступно по: http://www.oncology.ru/association/clinical-guidelines/2014/36.pdf.; Болотина Л.В., Владимирова Л.Ю., Деньгина Н.В. и др. Практические рекомендации по лечению злокачественных опухолей головы и шеи. Злокачественные опухоли 2018; 8(3, прил.):71–82. Доступно по: https://rosoncoweb.ru/standarts/RUSSCO/2018/2018-05.pdf. DOI: 10.18 027/2224-5057-2018-8-3s2-71-82.; National Comprehensive Cancer Network clinical practice guidelines in oncology (NCCN guidelines). Version 2.2019 for Head and Neck Cancers. Available at: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf.; Zhu L., Wang N. 18 F-fluorodeoxyglucose positron emission tomography-computed tomography as a diagnostic tool in patients with cervical nodal metastases of unknown primary site: a meta-analysis. Surg Oncol 2013;22(3):190–4. DOI:10.1016/j.suronc.2013.06.002.; Schwarz E., Hürlimann S., Soyka J.D. et al. FDG-positive Warthin’s tumors in cervical lymph nodes mimicking metastases in tongue cancer staging with PET/CT. Otolaryngol Head Neck Surg 2009;140(1):134–5. DOI:10.1016/j.otohns.2008.09.019.; Noij D.P., Pouwels P.J.W., Ljumanovic R. et al. Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma. Eur J Radiol 2015;84(1):108–16. DOI:10.1016/j.ejrad.2014.10.015.; Kyzas P.A., Evangelou E., Denaxa-Kyza D., Ioannidis J.P. 18 F-fluorodeoxyglucose positron emission tomography to evaluate cervical node metastases in patients with head and neck squamous cell carcinoma: a meta-analysis. J Natl Cancer Inst 2008;100(10):712–20. DOI:10.1093/jnci/djn125.; Sun R., Tang X., Yang Y., Zhang C. (18)FDG-PET/CT for the detection of regional nodal metastasis in patients with head and neck cancer: a meta-analysis. Oral Oncol 2015;51(4):314–20. DOI:10.1016/j.oraloncology.2015.01.004.; Mak D., Corry J., Lau E. et al. Role of FDG-PET/CT in staging and follow-up of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 2011;55(5):487–99.; Schöder H., Carlson D.L., Kraus D.H. et al. 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. J Nucl Med 2006;47(5):755–62.; Rodrigo J.P., Grilli G., Shah J.P. et al. Selective neck dissection in surgically treated head and neck squamous cell carcinoma patients with a clinically positive neck: systematic review. Eur J Surg Oncol 2018;44(4):395–403. DOI:10.1016/j.ejso.2018.01.003.; Haerle S.K., Strobel K., Ahmad N. et al. Contrast-enhanced 18 F-FDG-PET/CT for the assessment of necrotic lymph node metastases. Head Neck 2011;33(3):324–9. DOI:10.1002/hed.21447.; Saindane A.M. Pitfalls in the staging of cervical lymph node metastasis. Neuroimaging Clin N Am 2013;23(1):147–66. DOI:10.1016/j.nic.2012.08.011.; Xu G.Z., Zhu X.D., Li M.Y. Accuracy of whole-body PET and PET-CT in initial M staging of head and neck cancer: a meta-analysis. Head Neck 2011;33(1):87–94. DOI:10.1002/hed.21400.; Griffioen G.H., Louie A.V., de Bree R. et al. Second primary lung cancers following a diagnosis of primary head and neck cancer. Lung Cancer 2015;88(1):94–9. DOI:10.1016/j.lungcan.2015.01.011.; Jain K.S., Sikora A.G., Baxi S.S., Morris L.G. Synchronous cancers in patients with head and neck cancer: risks in the era of human papillomavirus-associated oropharyngeal cancer. Cancer 2013;119(10):1832–7. DOI:10.1002/cncr.27988.; Rose B.S., Jeong J.H., Nath S.K. et al. Population-based study of competing mortality in head and neck cancer. J Clin Oncol 2011;29(26):3503–9. DOI:10.1200/JCO.2011.35.7301.; Strobel K., Haerle S.K., Stoeckli S.J. Head and neck squamous cell carcinoma (HNSCC) – detection of synchronous primaries with (18)F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 2009;36(6): 919–27. DOI:10.1007/s00259-009-1064-6.; Higgins K.A., Hoang J.K., Roach M.C. Analysis of pretreatment FDG-PET SUV parameters in head-and-neck cancer: tumor SUVmean has superior prognostic value. Int J Radiat Oncol Biol Phys 2012;82(2):548–53. DOI:10.1016/j.ijrobp.2010.11.050.; Xie P., Li M., Zhao H. 18F-FDG PET or PET-CT to evaluate prognosis for head and neck cancer: a meta-analysis. J Cancer Res Clin Oncol 2011;137(7):1085–93. DOI:10.1007/s00432-010-0972.; Schinagl D.A., Span P.N., Oyen W.J., Kaanders J.H. Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study. Eur J Nucl Med Mol Imaging 2011;38(8):1449–58. DOI:10.1007/s00259-011-1789.; Rohde M., Nielsen A.L., Johansen J. Up-front PET/CT changes treatment intent in patients with head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2018;45(4):613–21. DOI:10.1007/s00259-017-3873-3.; Weber W.A. Assessing tumor response to therapy. J Nucl Med 2009;50 Suppl 1: 1S–10S. DOI:10.2967/jnumed.108.057174.; Arens A.I., Troost E.G., Schinagl D. et al. FDG-PET/CT in radiation treatment planning of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 2011;55(5):521–8.; Wong K.W., Kwong D.L.W., Khong P.L. et al. Delineation of biological tumor volume from positron emission tomography images in nasopharyngeal carcinoma. J Biomed Sci Engineering 2014;07(11):857–65. DOI:10.4236/jbise.2014.711085.; Henriques de Figueiredo B.H., Zacharatou C., Galland-Girodet S. et al. Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers. Strahlentherapie Onkol 2015;191(3):217–24. DOI:10.1007/s00066-014-0752-8.; Okamoto S., Shiga T., Yasuda K. et al. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med 2013;54(2):201–7. DOI:10.2967/jnumed.112.109330.; Ware R.E., Matthews J.P., Hicks R.J. et al. Usefulness of fluorine‐18 fluorodeoxyglucose positron emission tomography in patients with a residual structural abnormality after definitive treatment for squamous cell carcinoma of the head and neck. Head Neck 2004;26(12):1008–17. DOI:10.1002/hed.20097.; Porceddu S.V., Pryor D.I., Burmeister E. et al. Results of a prospective study of positron emission tomography-directed management of residual nodal abnormalities in node-positive head and neck cancer after definitive radiotherapy with or without systemic therapy. Head Neck 2011;33(12):1675–82. DOI:10.1002/hed.21655.; Yao M., Smith R.B., Hoffman H.T. et al. Clinical significance of postradiotherapy [18F]-fluorodeoxyglucose positron emission tomography imaging in management of head-and-neck cancer – a long-term outcome report. Int J Radiat Oncol Biol Phys 2009;74(1):9–14. DOI:10.1016/j.ijrobp.2008.07.019.; Leung A.S., Rath T.J., Hughes M.A. et al. Optimal timing of first posttreatment FDG PET/CT in head and neck squamous cell carcinoma. Head Neck 2016;38 Suppl 1: E853–8. DOI:10.1002/hed.24112.; Lefebvre J.L., Ang K.K. Larynx preservation clinical trial design: key issues and recommendations – a consensus panel summary. Int J Radiat Oncol Biol Phys 2009;73(5):1293–303. DOI:10.1016/j.ijrobp.2008.10.047.; Castaldi P., Rufini V., Bussu F. et al. Can “early” and “late” 18F-FDG PET-CT be used as prognostic factors for the clinical outcome of patients with locally advanced head and neck cancer treated with radio-chemotherapy? Radiother Oncol 2012;103(1):63–8. DOI:10.1016/j.radonc.2012.03.001.; Farrag A., Ceulemans G., Voordeckers M. et al. Can 18F-FDG-PET response during radiotherapy be used as a predictive factor for the outcome of head and neck cancer patients? Nucl Med Commun 2010;31(6):495–501. DOI:10.1097/MNM.0b013e3283334e2b.; Hentschel M., Appold S., Schreiber A. et al. Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for locoregional control and overall survival in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 2011;38(7):1203–11. DOI:10.1007/s00259-011-1759-3.; Marcus C., Ciarallo A., Tahari A.K. et al. Head and neck PET/CT: therapy response interpretation criteria (Hopkins criteria) – interreader reliability, accuracy, and survival outcomes. J Nucl Med 2014;55(9):1411–6. DOI:10.2967/jnumed.113.136796.; Cheson B.D., Fisher R.I., Barrington S.F. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 2014;32(27):3059–68. DOI:10.1200/JCO.2013.54.8800.; Sjövall J., Bitzén U., Kjellén E. et al. Qualitative interpretation of PET scans using a Likert scale to assess neck node response to radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging 2016;43(4):609–16. DOI:10.1007/s00259-015-3194-3.; Aiken A.H., Farley A., Baugnon K.L. et al. Implementation of a novel surveillance template for head and neck cancer: Neck Imaging Reporting and Data System (NI-RADS). J Am Coll Radiol 2016;13(6):743–6. DOI:10.1016/j.jacr.2015.09.032.; Castaldi P., Leccisotti L., Bussu F. et al. Role of (18)F-FDG PET-CT in head and neck squamous cell carcinoma. Acta Otorhinolaryngol Ital 2013;33(1):1–8.; Mirabile A., Miceli R., Calderone R.G. et al. Prognostic factors in recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck 2019;41(6):1895–902. DOI:10.1002/hed.25636.; Isles M.G., McConkey C., Mehanna H.M. A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. Clin Otolaryngol 2008;33(3):210–22. DOI:10.1111/j.1749-4486.2008.01688.; Abgral R., Querellou S., Potard G. et al. Does 18F-FDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med 2009;50(1):24–9. DOI:10.2967/jnumed.108.055806.; Liu T., Xu W., Yan W.L. et al. FDG-PET, CT, MRI for diagnosis of local residual or recurrent nasopharyngeal carcinoma, which one is the best? A systematic review. Radiother Oncol 2007;85(3):327–35. DOI:10.1016/j.radonc.2007.11.002.; Krabbe C.A., Pruim J., Dijkstra P.U. et al. 18F-FDG PET as a routine posttreatment surveillance tool in oral and oropharyngeal squamous cell carcinoma: a prospective study. J Nucl Med 2009;50(12):1940–7. DOI:10.2967/jnumed.109.065300.; Gupta T., Master Z., Kannan S. et al. Diagnostic performance of post-treatment FDG PET or FDG PET/CT imaging in head and neck cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2011;38(11):2083–95. DOI:10.1007/s00259-011-1893.; Chen Y.J., Rath T., Mohan S. PET-computed tomography in head and neck cancer: current evidence and future directions. Magn Reson Imaging Clin N Am 2018;26(1):37–49. DOI:10.1016/j.mric.2017.08.003.; Benedetto R., Massicano A.V.F., Crenshaw B.K. et al. 89 Zr-DFO-cetuximab as a molecular imaging agent to identify cetuximab resistance in head and neck squamous cell carcinoma. Cancer Biother Radiopharm 2019;34(5):288–96. DOI:10.1089/cbr.2018.2616.; Even A.J., Hamming-Vrieze O., van Elmpt W. et al. Quantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach. Oncotarget 2017;8(3):3870–80. DOI:10.18632/oncotarget.13910.; https://ogsh.abvpress.ru/jour/article/view/422

  6. 6
    Academic Journal

    Πηγή: Head and Neck Tumors; Vol 9, No 4 (2019); 10-16 ; Опухоли головы и шеи; Vol 9, No 4 (2019); 10-16 ; 2411-4634 ; 2222-1468

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal

    Πηγή: Diagnostic radiology and radiotherapy; № 3 (2017); 14-18 ; Лучевая диагностика и терапия; № 3 (2017); 14-18 ; 2079-5343 ; 10.22328/2079-5343-2017-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/232/216; Медведев С.В., Скворцова Т.Ю., Красикова Р.Н. ПЭТ в России: позитронно-эмиссионная томография в клинике и физиологии. СПб., 2008. 318 с. [Medvedev S.V., Skvorcova T.Yu., Krasikova R.N. PEHT v Rossii: pozitronno-ehmissionnaya tomografiya v klinike i fiziologii. Saint-Petersburg, 2008. 318 р. (In Russ.)].; Joubert S., Gour N., Guedj E. et al. Early-onset and lateonset Alzheimer’s disease are associated with distinct patterns of memory impairment. Cortex, 2015, Vol. 74, рр. 217–232. doi:10.1016/j.cortex.2015.10.014.; Jagust W.J., Landau S.M., Koeppe R.A. et al. The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core. Alzheimers Dement., 2015, Vol. 11(7), рр. 757–771. doi:10.1016/j.jalz.2015.05.001.; Cerami C., Della Rosa P.A., Magnani G. et al. Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia. Neuroimage Clin., 2014, Vol. 7, рр. 187–194, doi:10.1016/j.nicl.2014.12.004.; Mielke R., Heiss W.D. Positron emission tomography for diagnosis of Alzheimer’s disease and vascular dementia. J. Neural. Transm. Suppl. 1998, Vol. 53, рр. 237–250.; Kerrouche N., Herholz K., Mielke R. et al., 18FDG PET in vascular dementia: differentiation from Alzheimer’s disease using voxel– based multivariate analysis. J. Cereb. Blood Flow Metab., 2006, Vol. 26(9), рр. 1213–1221.; Park S.Y., Yoon H., Lee N. et al. Analysis of Cerebral Blood Flow with Single Photon Emission Computed Tomography in Mild Subcortical Ischemic Vascular Dementia. Nucl. Med. Mol. Imaging, 2014, Vol. 48 (4), рр. 272–277.; Катаева Г.В., Коротков А.Д., Мельничук К.В. Паттерны относи- тельных оценок регионарного мозгового кровотока и скорости метаболизма глюкозы в здоровом мозге человека // Медицинская визуализация. 2007. № 2. С. 84–92. [Kataeva G.V., Korotkov A.D., Mel’nichuk K.V. Patterny otnositel’nyh ocenok regionarnogo mozgovogo krovotoka i skorosti metabolizma glyukozy v zdorovom mozge cheloveka. Medicinskaya vizualizaciya, 2007, No. 2, рр. 84–92 (In Russ.)].; Катаева Г.В. Устойчивые паттерны распределений регионального мозгового кровотока и скорости метаболизма глюкозы в головном мозге человека: автореф. дис… канд. биол. наук. СПб., 2008. [Kataeva G.V. Ustojchivye patterny raspredelenij regional’nogo mozgovogo krovotoka i skorosti metabolizma glyukozy v golovnom mozge cheloveka: avtoref. dis… kand. biol. nauk. Saint-Petersburg, 2008 (In Russ.)].; Гомзина Н.А., Васильев Д.А., Красикова Р.Н. Оптимизация роботизированного синтеза 2-[18F]фтор-2-дезокси-D-глюкозы на основе щелочного гидролиза. Радиохимия. 2002. Т. 44 (6). C. 527–532. [Gomzina N.A., Vasil’ev D.A., Krasikova R.N. Optimizaciya robotizirovannogo sinteza 2-[18F]ftor-2-dezoksi-Dglyukozy na osnove shchelochnogo gidroliza. Radiohimiya, 2002, Vol. 44(6), рр. 527–532 (In Russ.)].; Talairach J., Tournoux P. Co-planar Stereotactic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. N. Y.: Thieme, 1988.; Statistical Parametric Mapping. http://www.fil.ion.ucl.ac.uk/spm/ (18.01.2016).; WFU PickAtlas. http://www.nitrc.org/projects/wfu_pickatlas/ (18.01.2016).; Foster N.L., Wang A.Y., Tasdizen T. et al. Realizing the potential of positron emission tomography with 18F-fluorodeoxyglucose to improve the treatment of Alzheimer’s disease. Alzheimers Dement., 2008, Vol. 4(1), рр. 29–36. doi:10.1016/j.jalz.2007.10.004.; Rasmussen J.M., Lakatos A., van Erp T.G. et al. Alzheimer’s Disease Neuroimaging Initiative. Empirical derivation of the reference region for computing diagnostic sensitive ¹ fluorodeoxyglucose ratios in Alzheimer’s disease based on the ADNI sample. Biochem Biophys Acta, 2012, Vol. 1822 (3), рр. 457–466. doi:10.1016/j.bbadis.2011.09.008.; Yakushev I., Landvogt C., Buchholz H.G. et al. Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatry Res., 2008, Vol. 164(2), рр. 143–153. doi:10.1016/j.pscychresns.2007.11.004.; Mielke R., Herholz K., Grond M. et al. Severity of vascular dementia is related to volume of metabolically impaired tissue. Arch Neurol., 1992, Vol. 49(9), рр. 909–913.; Липовецкий Б.М., Катаева Г.В. Дифференцированная оценка регионарной перфузии мозга у больных с цереброваскулярным заболеваниям в сопоставлении с дальнейшим течением. Медицинская визуализация. 2012. № 4. С. 91–95. [Lipoveckij B.M., Kataeva G.V. Differencirovannaya ocenka regionarnoj perfuzii mozga u bol’nyh s cerebrovaskulyarnym zabolevaniyam v sopostavlenii s dal’nejshim techeniem. Medicinskaya vizualizaciya, 2012, Nо. 4, рр. 91–95 (In Russ.)].; Knopman D.S., Jack C.R., Wiste H.J. et al. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging., 2014, Vol. 35(9), рр. 2096–2106. doi:10.1016/j.neurobiolaging.2014.03.006.; Yoshizawa H., Gazes Y, Stern Y et al. Characterizing the normative profile of 18F–FDG PET brain imaging: sex difference, aging effect, and cognitive reserve. Psychiatry Res., 2014, Vol. 221(1), рр. 78– 85. doi:10.1016/j.pscychresns.2013.10.009.; Kalpouzos G., Chételat G., Baron J.C. et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol. Aging., 2009, Vol. 30(1). рр. 112–124.

  8. 8
  9. 9