Showing 1 - 20 results of 42 for search '"CNPQ::CIENCIAS DA SAUDE::MEDICINA::CLINICA MEDICA::ENDOCRINOLOGIA"', query time: 0.71s Refine Results
  1. 1
    Dissertation/ Thesis

    Contributors: Ramos, Helton Estrela, orcid:0000-0002-2900-2099, http://lattes.cnpq.br/5624505454133902, Sardinha, Mariluze Maria de Souza, http://lattes.cnpq.br/0990732888878696, Castelo Branco, Bruno, orcid:0009-0001-3667-167X, http://lattes.cnpq.br/8913177316699431, Cury, Adriano Namo, orcid:0000-0002-9777-8366, http://lattes.cnpq.br/7133785713614688

    File Description: application/pdf

    Relation: 1. WIERSINGA, W.M.; BARTALENA, L. Epidemiology and prevention of Graves' ophthalmopathy. Thyroid, [s.l], v.12, n.10, p.855-860, 2012. DOI:10.1089/105072502761016476. 2. SMITH, T.J.; HEGEDUS, L. Grave’s disease. N. Engl. J. Med., Boston, v.375, n.16, p.1552–1565, 2016. 3. BARTALENA, L. et al. EUGOGO, The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol., Oslo, v.185, n.4, p. G43–G67, 2021. DOI: https://doi.org/10.1530/EJE-21-0479. 4. HE, C. Z. et al. Autologous serum eye drops for patients with dry eye disease: a systematic review and meta-analysis of randomized controlled trials. Front. Med., Lausanne, v.11, p. 1430785, 2024. DOI:10.3389/fmed.2024.1430785. 5. SHEPPARD, J.; SHEN LEE, B.; PERIMAN, L. M. Dry eye disease: identification and therapeutic strategies for primary care clinicians and clinical specialists. Ann. Med., London, v.55, p.241–252, 2023. DOI:10.1080/07853890.2022.2157477. 6. BRON, A. J. et al. TFOS DEWS II pathophysiology report. Ocul. Surf., United States, v.15, p.438–510, 2017. DOI:10.1016/j.jtos.2017.05.011. 7. GILBARD, J.P.; FARRIS, R. L. Ocular surface drying and tear film osmolarity in thyroid eye disease. Acta Ophthalmol., Oxford, v. 61, n.1, p.108–116, 1983. 8. KHURANA, A. K, et al. Tear film profile in Graves’ophthalmopathy. Acta Ophthalmol., Oxford, v.70, n.3, p. 346–349, 1992. 9. DEWS. The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop (2007). Ocul. Surf., United States, v.5, n.2, p.75–92, 2007. DOI:10.1016/s1542-0124(12)70081-2. 10. ISMAILOVA, D.S.; FEDOROV, A.A.; GRUSHA, Y.O. Ocular surface changes in thyroid eye disease. Orbit, [s.l], v.32, n.2, p.87–90, 2013. 11. MAK, F.H.W.; TING, M.; EDMUNDS, M. R. Videographic Anaylsis of Blink Dynamics following upper eyelid blepharoplasty patients. Plast. Reconstr. Glob Open, United Sates, v.8, n.7, p.e 2991, 2020. DOI:10.1097/GOX.0000000000002991. 12. TAKAHASHI, Y, et al. Tear film break-up patterns in thyroid eye disease. Sci. Rep., London, v.11, n.1, p.5288, 2021. DOI:10.1038/s41598-021-84661-4. 74 13. BRUSCOLINI, A. et al. Dry Eye Syndrome in Non-Exophthalmic Graves Disease. Semin Ophthalmol., United States, v.30, n.5-6, p.372–376, 2015. DOI:10.3109/08820538.2013.874491. 14. CRAIG, J.P. et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf., United States, v.15, n.3, p.276–283, 2017. 15. DOUGLAS, R.S.; GUPTA, S. The pathophysiology of thyroid eye disease: Implications for immunotherapy. Curr Opin Ophthalmol., [s.l], v.22, n.5, p. 385–390, 2011. DOI:10.1097/ICU.0b013e3283499446. 16. PATEL, A.; YANG, H.; DOUGLAS, R. S. A New Era in the Treatment of Thyroid Eye Disease. Am. J. Ophthalmol., Chicago, v.208, p. 281–288, 2019. DOI:10.1016/j.ajo.2019.07.021. 17. JENNIFER, P. et al. TFOS DEWS II Definition and Classification Report. Ocular Surf., United States, v.15, n. 3, p. 276-283, 2017. DOI: https://doi.org/10.1016/j.jtos.2017.05.008. 18. PAPAS, E. B. The global prevalence of dry eye disease: a Bayesian view. Ophthalmic Physiol. Opt., United Kingdom, v.41, p.1254–1266, 2021. DOI:10.1111/opo.12888. 19. BOBORIDIS, K. G. et al. Patient-reported burden and overall impact of dry eye disease across eight European countries: a cross-sectional web-based survey. BMJ Open., London, v.13, p. e067007, 2023. DOI:10.1136/bmjopen-2022-067007. 20. Ayaki M, et al. Sleep and mood disorders in dry eye disease and allied irritating ocular diseases. Sci. Rep., London, v.6, p.22480, 2016. DOI:10.1038/srep22480. 21. DEO, N.; NAGRALE, P. Dry eye disease: an overview of its risk factors, diagnosis, and prevalence by age, sex, and race. Cureus, United States, v.16, n.2, p.e54028, 2024. DOI:10.7759/cureus.54028. 22. PARK, J.; BAEK, S. Dry eye syndrome in thyroid eye disease patients: The role of increased incomplete blinking and Meibomian gland loss. Acta Ophthalmol., Oxford, v. 97, n.5, p. e800–806, 2019. DOI:10.1111/aos.14000. 23. BRUSCOLINI A, et al. Dry eye syndrome in non-exophthalmic graves’ disease. Semin Ophthalmol., [s.l], v.30, n.5–6, p. 372–376, 2015. DOI:10.3109/ 08820538.2013.874491. 24. ACHTSIDIS, V. et al. Clinical disease of tear film, diagnosis and management. Eur. Ophthalmic. Rev., [s.l.], v.8, n.1, p.17, 2014. 25. STERN, M. E. et al. A unified theory of the role of the ocular surface in dry eye. Adv. Exp. Med. Biol., New York, v.438, p. 643–651, 1998. 75 26. CHER, I. Ocular surface concepts: Development and citation. Ocul. Surf., United States, v.12, p. 10–13, 2014. DOI:10.1016/j.jtos.2013.10.004. 27. TUTT, R. et al. Optical and visual impact of tear break-up in human eyes. Invest. Ophthalmol. Vis. Sci., United States, v.41, n.13, p.4117–4123, 2000. 28. ROLANDO, M.; ZIERHUT M. The ocular surface and tear film and their dysfunction in dry eye disease. Surv. Ophthalmol., [s.l], v.45, supl. 2, p.S203–210, 2001. 29. ZHOU, L. et al. Proteomic analysis of rabbit tear fluid: Defensin levels after an experimental corneal wound are correlated to wound closure. Proteomics, [s.l.], v.7, n.17, p. 3194–3206, 2007. DOI:10.1002/pmic.200700137. 30. ZHOU, L. et al. Proteomic analysis of human tears: defensin expression after ocular surface surgery. J. Proteome Res. United States, v.3, n.3, p.410–416, 2004. DOI:10.1021/pr034065n. 31. ZHOU, L. et al. In-depth analysis of the human tear proteome. J. Proteomics, [s.l], v.75, n.13, p. 3877–3885, 2012. DOI:10.1016/j.jprot.2012.04.053. 32. GREEN-CHURCH, K.B. et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease. Invest. Ophthalmol. Vis. Sci., United States, v.52, n.4, p.1979– 1993, 2011. DOI:10.1167/iovs.10-6997d. 33. KNOP, E. et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest. Ophthalmol. Vis. Sci., United States, v.52, p.1938–1978, 2011. 34. DEN, S. et al. Association between meibomian gland changes and aging, sex, or tear function. Cornea, [s.l.], v.25, n.6, p. 651–655, 2006. DOI:10.1097/01.ico.0000227889.11500.6f. 35. ALGHAMDI, Y. A, et al. Epidemiology of Meibomian Gland Dysfunction in an Elderly Population. Cornea, [s.l], v.35, n.6, p. 731–735, 2016. DOI:10.1097/ICO.0000000000000815. 36. HYKIN, P.G.; BRON, A. J. Age-related morphological changes in lid margin and meibomian gland anatomy. Cornea, [s.l], v.11, p.334–3342, 1992. 37. OBATA H. Anatomy and histopathology of human meibomian gland. Cornea, [s.l.], v.21, supl. 7, p.S70–S74, 2002. DOI:10.1097/01.ico.0000263122.45898.09. 38. ROBIN, J.B. et al. In vivo transillumination biomicroscopy and photography of meibomian gland dysfunction. Ophthalmology. [s.l.], v.92, n.10, p.1423–1426, 1985. DOI:10.1016/s0161-6420(85)33848-4. 76 39. GUTGESELL, V.J.; STERN, G.A.; HOOD, C. I. Histopathology of meibomian gland dysfunction. Am. J. Ophthalmol., Chicago, v.94, n.3, p.383–387, 1982. DOI:10.1016/0002-9394(82)90365-8. 40. HOM, M.M. et al. Prevalence of meibomian gland dysfunction. Optom. Vis. Sci., United States, v.67, p.710–712, 1990. 41. MATHERS, W.D. et al. Meibomian gland dysfunction in chronic blepharitis. Cornea, [s.l], v.10, n.4, p.277–285, 1991. DOI:10.1097/00003226-199107000-00001. 42. WEI, A. et al. Evaluation of age-related changes in human palpebral conjunctiva and meibomian glands by in vivo confocal microscopy. Cornea, [s.l], v.30, n.9, p.1007– 1012, 2011. DOI:10.1097/ICO.0b013e31820ca468. 43. Van SETTEN, G. B. Impact of Attrition, Intercellular Shear in Dry Eye Disease: When Cells are Challenged and Neurons are Triggered. Int. J. Mol. Sci., Switzerland, v.21, n.12, p.4333, 2020. doi:10.3390/ijms21124333. 44. LEE, O.L. et al. Evaluation of the corneal epithelium in non-Sjögren’s and Sjögren’s dry eyes: an in vivo confocal microscopy study using HRT III RCM. BMC Ophthalmol., [s.l], v.18, p.309, 2018. DOI:10.1186/s12886-018-0971-3. 45. HODGES, R.R.; DARTT, D. A. Signaling Pathways of Purinergic Receptors and Their Interactions with Cholinergic and Adrenergic Pathways in the Lacrimal Gland. J. Ocul. Pharmacol. Ther., United States, v.32, p.490-497, 2016. 46. HARRIS, M.A. et al. CT dimensions of the lacrimal gland in Graves orbitopathy. Ophthal Plast Reconstr Surg., [s.l.], v.28, p.69–72, 2012. DOI:10.1097/IOP.0b013e31823c4a3a. 47. ECKSTEIN, A.K. et al. Dry eye syndrome in thyroid-associated ophthalmopathy: lacrimal expression of TSH receptor suggests involvement of TSHR-specific autoantibodies. Acta Ophthalmol Scand., [s.l], v.82, n.3, p.291–297, 2004. DOI:10.1111/j.1395-3907.2004.00268.x. 48. HUH, H. D. et al. The change of lacrimal gland volume in Korean patients with thyroidassociated ophthalmopathy. Korean J. Ophthalmol., Bethesda, v.30, n.5, p.319–325, 2016. DOI:10.3341/kjo.2016.30.5.319. 49. HUANG, D.P. et al. Changes of lacrimal gland and tear inflammatory cytokines in thyroid-associated ophthalmopathy. Invest. Ophthalmol. Vis. Sci., United States, v.55, n.8, p.4935–4943, 2014. DOI:10.1167/iovs.13-13704. 50. ZOUKHRI, D. Effect of inflammation on lacrimal gland function. Exp. Eye Res., [s.l], v.82, n.5, p.885–898, 2006. DOI:10.1016/j.exer.2005.10.018. 77 51. MATHEIS, N. et al. Proteomics of tear fluid in thyroid-associated orbitopathy. Thyroid, [s.l.], v.22, p.1039–1045, 2012. 52. KHALIL, H.A. et al. Secretory IgA and lysozyme in tears of patients with Graves' ophthalmopathy. Doc. Ophthalmol., [s.l], v.72, n.3-4, p.329–334, 1989. DOI:10.1007/BF00153500. 53. MANTELLI, F.; MAURIS, J.; ARGUESO, P. The ocular surface epithelial barrier and other mechanisms of mucosal protection: from allergy to infectious diseases. Curr. Opin. Allergy Clin. Immunol., United States, v.13, n.5, 563–8, 2013. DOI:10.1097/ACI.0b013e3283645899. 54. MANTELLI, F.; ARGUESO, P. Functions of ocular surface mucins in health and disease. Curr. Opin. Allergy Clin. Immunol., United States, v.8, n.5, ´p.477–483, 2008. DOI:10.1097/ACI.0b013e32830e6b04. 55. UCHINO, Y. The Ocular Surface Glycocalyx and its Alteration in Dry Eye Disease: A Review. Invest. Ophthalmol. Vis. Sci., United States, v.59, n.14, p.DES157–DES62, 2018. DOI:10.1167/iovs.17-23756. 56. SWAMYNATHAN, S.K.; WELLS, A. Conjunctival goblet cells: Ocular surface functions, disorders that affect them, and the potential for their regeneration. Ocul. Surf., United States, v.18, p.19–26, 2020. 57. UCHINO Y, et al. Alteration of galectin-3 in tears of patients with dry eye disease. Am. J. Ophthalmol., Chicago, v.159, n.6, p. 1027–1035, 2015. DOI:10.1016/j.ajo.2015.02.008. 58. LEONG, Y.Y.; TONG, L. Barrier function in the ocular surface: from conventional paradigms to new opportunities. Ocul. Surf., United States, v.13, n.2, p.103–109, 2015. DOI:10.1016/j.jtos.2014.10.003. 59. ZHANG, X. et al. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS One, United States, v.7, n.5, p. e36822, 2012. DOI:10.1371/journal.pone.0036822. 60. BOSE, T. et al. Tissue resident memory T cells in the human conjunctiva and immune signatures in human dry eye disease. Sci. Rep., London, v.7, p. 45312, 2017. 61. WILLIAMS, G.P. et al. The dominant human conjunctival epithelial CD8alphabeta+ T cell population is maintained with age but the number of CD4+ T cells increases. Age, Dordrecht, v.34, n.6, p.1517–1528, 2012. DOI:10.1007/s11357-011-9316-3. 62. KABOSOVA, A. et al. Compositional differences between infant and adult human corneal basement membranes. Invest. Ophthalmol Vis. Sci., United States, v.48, n.11, p. 4989–4999, 2007. DOI:10.1167/iovs.07-0654. 78 63. KRUEGEL, J.; MIOSGE, N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol. Life Sci., [s.l], v.67, n.17, p. 2879–2895, 2010. DOI:10.1007/s00018-010-0367-x. 64. WILSON, S.E.; TORRICELLI, A.A.M.; MARINO, G. K. Corneal epithelial basement membrane: Structure, function and regeneration. Exp. Eye Res., United States, v.194, p. 108002, 2020. DOI:10.1016/j.exer.2020.108002. 65. ALLANSMITH, M.R.; GREINER, J.V.; BAIRD, R. S. Number of inflammatory cells in the normal conjunctiva. Am. J. Ophthalmol., Chicago, v.86, n.2, p.250–259, 1978. DOI:10.1016/s0002-9394(14)76821-7. 66. SHAN, M. et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science, [s.l], v.342, n.6157, p.447–453, 2013. DOI:10.1126/science.1237910. 67. RALPH, R. A. Conjunctival goblet cell density in normal subjects and in dry eye syndromes. Invest. Ophthalmol., St. Louis, v.14, n.4, p. 299–302, 1975. 68. MURUBE, J.; RIVAS, L. Impression cytology on conjunctiva and cornea in dry eye patients establishes a correlation between squamous metaplasia and dry eye clinical severity. Eur. J. Ophthalmol., United States, v.13, p. 115–127, 2003. 69. PFLUGFELDER, S.C. et al. Correlation of goblet cell density and mucosal epithelial membrane mucin expression with rose bengal staining in patients with ocular irritation. Ophthalmology, [s.l], v.104, n.2, p. 223–235, 1997. DOI:10.1016/s0161- 6420(97)30330-3. 70. KNOP, N.; KNOP, E. Conjunctiva-associated lymphoid tissue in the human eye. Invest. Ophthalmol Vis. Sci., United States, v.41, p.1270–1279, 2000. 71. CERUTTI, A.; CHEN, K.; CHORNY, A. Immunoglobulin Responses at the Mucosal Interface. Annu Rev. Immunol., United States, v. 29, p.273–293, 2011. DOI:10.1146/annurev-immunol-031210-101317. 72. BOSCHI, A. et al. Quantification of cells expressing the thyrotropin receptor in extraocular muscles in thyroid associated orbitopathy. Br J. Ophthalmol., v.89, n.6, p. 724, 2005. DOI:10.1136/bjo.2004.050807. 73. ZHANG, L. et al. Biological Effects of Thyrotropin Receptor Activation on Human Orbital Preadipocytes. Invest. Ophthalmol. Vis. Sci., United States, v.47, p.5197– 5203, 2006. DOI: https://doi.org/10.1167/iovs.06-0596. 74. HUANG, D.P. et al. Inflammatory cytokine profiles in the tears of thyroid-associated ophthalmopathy. Graefes Arch. Clin. Exp. Ophthalmol., Berlin, v.250, n.4, p. 619– 625, 2012. DOI:10.1007/s00417-011-1863-x. 79 75. KASHKOULI, M.B. et al. Subjective versus objective dry eye disease in patients with moderate-severe thyroid eye disease. Ocul. Surf., United States, v.16, n.4, p.458–462, 2018. DOI:10.1016/j.jtos.2018.07.003. 76. TSUI. S. et al. Evidence for an Association between Thyroid-Stimulating Hormone and Insulin-Like Growth Factor 1 Receptors: A Tale of Two Antigens Implicated in Graves’ Disease. J. Immunol., Netherlands, v.181, n.6, p.4397–4405, 2008. DOI: https://doi.org/10.4049/jimmunol.181.6.4397 77. KRIEGER, C. C. et al. Thyroid stimulating hormone (TSH)/insulin-like growth factor 1 (IGF1) receptor cross-talk in Human cells. Curr. Opin. Endocr. Metab. Res., United Kingdom, v.2, p.29–33, 2018. DOI: https://doi.org/10.1016/j.coemr.2018.01.007 78. GREWAL, I.S.; FLAVELL, R. A. The Role of CD40 Ligand in Costimulation and TCell Activation. Immunological Rev., Copenhagen, v.153, p.85–106, 1996. DOI: https://doi.org/10.1111/j.1600-065X.1996.tb00921.x. 79. FELDON, S.E. et al. Autologous T-Lymphocytes Stimulate Proliferation of Orbital Fibroblasts Derived from Patients with Graves’ Ophthalmopathy. Investig. Ophthalmol. Vis. Sci., United States, v.46, p. 3913–3921, 2005. DOI: https://doi.org/10.1167/iovs.05-0605. 80. SEMPOWSKI, G.D. et al. Human orbital fibroblasts are activated through CD40 to induce proinflammatory cytokine production. Am. J. Physiol. Cell Physiol., United States, v.274, n.3, p.C707-C714, 1998. DOI: https://www.ncbi.nlm.nih.gov/pubmed/29591126. 81. WANG, H.S. et al. Leukoregulin induction of prostaglandin-endoperoxide H synthase-2 in human orbital fibroblasts. An in vitro model for connective tissue inflammation. J. Biol. Chem., [s.l], v.271, n.37, p. 22718–22728, 1996. DOI: https://doi.org/10.1074/jbc.271.37.22718 82. TOKER, E.; ASFUROĞLU, E. Corneal and conjunctival sensitivity in patients with dry eye: the effect of topical cyclosporine therapy. Cornea, [s.l], v.29, n.2, p.133–140, 2010. DOI:10.1097/ICO.0b013e3181acf68d. 83. KUMAR, S. et al. A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Graves’ ophthalmopathy. J. Mol. Endocrinol., Bristol, v.46, n. 3, p.155–163, 2011. DOI: https://doi.org/10.1530/JME-11-0006. 84. PRITCHARD, J. et al. Immunoglobulin Activation of T Cell Chemoattractant Expression in Fibroblasts from Patients with Graves’ Disease Is Mediated Through the Insulin-Like Growth Factor I Receptor Pathway. J Immunol., Inglaterra, v.170, n.12, p.6348-6354, 2003. DOI: https://doi.org/10.4049/jimmunol.170.12.6348 80 85. DOUGLAS, R.S. et al. B Cells from Patients with Graves’ Disease Aberrantly Express the IGF-1 Receptor: Implications for Disease Pathogenesis. J. Immunol., Inglaterra, v.181, n.8, p.5768–5674, 2008. DOI: https://doi.org/10.4049/jimmunol.181.8.5768 86. DOUGLAS, R.S. et al. Aberrant Expression of the Insulin-Like Growth Factor-1 Receptor by T Cells from Patients with Graves’ Disease May Carry Functional Consequences for Disease Pathogenesis. J Immunol., Inglaterra, v.178, n.5, p. 3281– 3287, 2007. DOI: https://doi.org/10.4049/jimmunol.178.5.3281. 87. SMITH, T.J.; HOA, N. Immunoglobulins from Patients with Graves’ Disease Induce Hyaluronan Synthesis in Their Orbital Fibroblasts through the Self-Antigen, InsulinLike Growth Factor-I Receptor. J. Clin. Endocrinol. Metab., United States, v.89, n.10, p.5076–5080, 2004. DOI: https://doi.org/10.1210/jc.2004-0716 88. SMITH, T.J.; JANSSEN, J.A.M.J.L. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocr. Rev., United States, v.40, p.236–267, 2019. DOI: https://doi.org/10.1210/er.2018-00066 89. BARTALENA, L. et al. Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur. J. Endocrinol., Oslo, v.158, n.3, p. 273–285, 2008. DOI: https://doi.org/10.1530/EJE-07-0666. 90. BARTALENA, L. et al. Orbitopathy Guidelines for the Management of Graves’ Orbitopathy. Eur. Thyroid J., Switzerland, v.5, p.9–26, 2016. DOI: https://doi. org/10.1159/000443828. 91. BARTALENA L, et al. Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur. J. Endocrinol., Oslo, v.158, n.3, p.273–285, 2008. DOI: https://doi.org/10.1530/EJE-07-0666. 92. RUNDLE, F. Management of exophthalmos and related ocular changes in Graves’ disease. Metabolism, [s.l], v.6, n.1, p.36–48, 1957. 93. MOURITS, M.P. et al. Clinical criteria for the assessment of disease activity in Graves’ ophthalmopathy: a novel approach. Br. J. Ophthalmol., United States, 1989;73(8):639–44. doi: https://doi.org/10.1136/ bjo.73.8.639 94. VILLANI, E. et al. Corneal involvement in Graves' orbitopathy: an in vivo confocal study. Investig. Ophthalmol. Vis. Sci., United States, v.51, n.9, p.4574–4578, 2010. DOI:10.1167/iovs.10-5380. 95. WU, L-Q. et al. Altered Corneal nerves in chinese thyroid-associated ophthalmopathy patients observed by in vivo con- focal microscopy. Med. Sci. Monit., United States, v.25, p.1024–1031, 2019. DOI:10.12659/MSM.912310. 81 96. KISHAZI, E. et al. Differential profiling of lacrimal cytokines in patients suffering from thyroid-associated orbitopathy. Sci. Rep., Reino Unido, v.8, n.1, p.10792, 2018. DOI:10.1038/s41598-018-29113-2. 97. UJHELYI, B. et al. Graves' orbitopathy results in profound changes in tear composition: a study of plasminogen activator inhibitor-1 and seven cytokines. Thyroid, [s.l], v. 22, n.4, p. 407–414, 2012. DOI:10.1089/thy.2011.0248. 98. CHEN, Q. The expression of interleukin-15 and interleukin-17 in tears and orbital tissues of Graves ophthalmopathy patients. J. Cell Biochem., Unique, v.120, n.4, p.6299–6303, 2019. DOI:10.1002/jcb.27916. 99. CAI, K.B.; WEI, R. L. Interleukin-7 expression in tears and orbital tissues of patients with Graves' ophthalmopathy. Endocrine, [s.l.], v.44, n.1, p.140–144, 2013. DOI:10.1007/s12020-012-9840-7. 100. SONG, R. H. et al. Proteomics screening of differentially expressed cytokines in tears of patients with Graves' ophthalmopathy. Endocr. Metab. Immune Disord. Drug Targets, United Arab Emirates, v.20, n.1, p.87–95, 2020. DOI:10.2174/1871530319666190618142215. 101. MATHEIS N, et al. Proteomics differentiate between thyroid-associated orbitopathy and dry eye syndrome. Invest. Ophthalmol. Vis. Sci., United States, v.56, n.4, p. 2649– 2656, 2015. DOI:10.1167/iovs.15-16699. 102. AASS, C. et al. Establishment of a tear protein biomarker panel differentiating between Graves' disease with or without orbitopathy. PLoS One., United States, v.12, n.4, p. e0175274, 2017. DOI:10.1371/journal.pone.0175274. 103. CHOI, W. et al. Oxidative stress markers in tears of patients with Graves' orbitopathy and their correlation with clinical activity score. BMC Ophthalmol., [s.l], v.18, n.1, p.303, 2018. DOI:10.1186/s12886-018-0969-x. 104. WEI, Y-H, et al. In vivo confocal microscopy of bulbar conjunctiva in patients with Graves’ ophthalmopathy. J. Formos Med. Assoc., China, v.114, n.10, p.965–972, 2015. 105. XU N, et al. Ocular surface characteristics and impression cytology in patients with active versus inactive Thyroid Eye Disease. Eye Sci., v.27, n.2, p.64–68, 2012. DOI:10.3969/j.issn.1000-4432.2012.02.003. 106. DU, B. et al. Clinical features and clinical course of thyroid-associated ophthalmopathy: a case series of 3620 Chinese cases. Eye, London, v.35, n.8, p.2294–2301, 2021. DOI:10.1038/s41433-020-01246-7. 107. ALVES, M. et al. Comparison of diagnostic tests in distinct well-defined conditions related to dry eye disease. PLoS One, United States, v.9, n.5, p. e97921, 2014. DOI:10.1371/journal.pone.0097921. 82 108. SINGH, S. et al. Lacrimal and meibomian gland evaluation in dry eye disease: A mini review. Indian J. Ophthalmol., India, v.71, n.4, p.1090-1098, 2023. 109. SALL, K. et al. Validação de uma escala de classificação modificada do National Eye Institute para coloração de fluoresceína da córnea. Clin. Ophthalmol., Australia, v.17, p.757-767, 2023. DOI: https://doi.org/10.2147/OPTH.S398843 110. KIM, H.C.; PARK, W. H. Propriedade fluorescente do conjugado glicol quitosanafluoresceína isotiocianato para material de bioimagem. Int. J. Biol. Macromol., Netherlands, v.135, p.1217-1221, 2019. 111. ISMAILOVA, D.S.; FEDOROV, A.A.; GRUSHA, Y. O. Ocular surface changes in thyroid eye disease. Orbit., [s.l], v.32, n.2, p. 87–90, 2013. DOI:10.3109/01676830.2013.764440. 112. McGINNIGLE, S.; NAROO, S.A.; EPERJESI, F. Evaluation of dry eye. Surv. Ophthalmol., United States, v.57, n.4, p.293–316, 2012. DOI:10.1016/j.survophthal.2011.11.003. 113. BRON, A. J. et al. Clinical staining of the ocular surface: Mechanisms and interpretations. Prog. Retin. Eye Res., v. 44, p.36-61, 2015. DOI: https://doi.org/10.1016/j.preteyeres.2014.10.001. 114. HOLLY, F.J.; LAMBERTS, D.W.; ESQUIVEL, E. D. Cinética do fluxo capilar lacrimal na tira de Schirmer. Curr. Eye Res., London, v.2, n.1, p.57-70, 1982. 115. EKICI, E.; CAGLAR, C.; AKGÜMÜŞ, E. Ü. A repetibilidade, reprodutibilidade e correlação do teste de Schirmer: uma comparação entre olhos abertos e fechados. Korean J. Ophthalmol., Korea, v.36, n. 4, p.306-312, 2022. 116. KORB, D. R. Survey of preferred tests for diagnosis of the tear film and dry eye. Cornea, [s.l], v.19, n.4, p.483-486, 2000. DOI:10.1097/00003226-200007000-00016. 117. SCHIFFMAN, R.M. et al. Reliability and Validity of the Ocular Surface Disease Index. Arch. Ophthalmol., v.118, n.5, p. 615–621, 2000. DOI:10.1001/archopht.118.5.615 118. PRIGOL, A. M. et al. [Translation and validation of ocular surface disease index to Portuguese]. Arq. Bras. Oftalmol., São Paulo, v.75, n.1, p. 24–28, 2012. DOI:10.1590/S0004-27492012000100005 119. ALLAM, I. Y. et al. Ocular Surface Changes in Patients with Thyroid Eye Disease: An Observational Clinical Study. Clin. Ophthalmol., New Zealand, v.15, p. 2481-2488, 2021. DOI:10.2147/OPTH.S317708. 83 120. GUPTA, A.; SADEGHI, P.B.; AKPEK, E.K. Occult thyroid eye disease in patients presenting with dry eye symptoms. Am. J. Ophthalmol., United States, v.147, n.5, p.919–923, 2009. DOI:10.1016/j.ajo.2008.12.007. 121. XU, N. et al. Ocular surface characteristics and impression cytology in patients with active versus inactive Thyroid Eye Disease. Eye Sci., China, v.2, n.2, p.64–68, 2012. DOI:10.3969/j.issn.1000-4432.2012.02.003. 122. WANG, C-Y, et al. The function and morphology of Meibomian glands in patients with thyroid eye disease: a preliminary study. BMC Ophthalmol., [s.l], v.18, n.1, p.90, 2018. DOI:10.1186/s12886-018-0763-9. 123. KIM, Y. S et al. Meibomian gland dysfunction in Graves’ orbitopathy. Can. J. Ophthalmol., Montreal, v.50, n. 4, p.278–282, 2015. DOI:10.1016/j.jcjo.2015.05.012.; https://repositorio.ufba.br/handle/ri/43031

  2. 2
    Dissertation/ Thesis

    Contributors: Rodrigues, Ricardo, http://lattes.cnpq.br/0132446377322877, Silva, Robinson Sabino da, http://lattes.cnpq.br/1886483839073466, Zezell, Denise Maria, http://lattes.cnpq.br/3524890504250775, Silva, Sindeval José da, http://lattes.cnpq.br/7291894930505297

    File Description: application/pdf

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20