Showing 1 - 20 results of 179 for search '"CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA MOLECULAR E DE MICROORGANISMOS"', query time: 1.18s Refine Results
  1. 1
  2. 2

    File Description: application/pdf

    Relation: VIEIRA, Sabrinna Wolney Grossi. Seleção de aptâmeros contra cepas e isolados bacterianos resistentes a antibióticos. 2025. 29 f. Trabalho de Conclusão de Curso (Graduação em Biotecnologia) – Universidade Federal de Uberlândia, Uberlândia, 2025.; https://repositorio.ufu.br/handle/123456789/45930

  3. 3
    Dissertation/ Thesis

    Contributors: Antón, Ana Rita Sokolonski, http://lattes.cnpq.br/1228384941765961, Seyffert, Núbia, http://lattes.cnpq.br/5479050391246403, Alves, Adriana Martins da Rocha Maués, http://lattes.cnpq.br/0169918736274683

    File Description: application/pdf

    Relation: AHMAD, S.; ALFOUZAN, W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections In Healthcare Facilities. Microorganisms, Suiça, v.9, n.4, 2021. DOI: https://doi.org/10.3390/MICROORGANISMS9040807. ALTSCHUL, S.F.; MADDEN, T.L.; SCHÄFFER, A.A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, Oxford, v.25, n.17, p.3389-402, Sept 1997 . DOI:10.1093/nar/25.17.3389. ALVES, D. da N.; FERREIRA, A. R.; DUARTE, A. B. S.; MELO, A. K. V.; SOUSA, D. P. de; CASTRO, R. D. de. Breakpoints for the Classification of Anti-Candida Compounds inAntifungal Screening. BioMed Research International, New York, 2021. DOI: https://doi.org/10.1155/2021/6653311. ARASTEHFAR, A.; LASS-FLÖRL, C.; GARCIA-RUBIO, R.; DANESHNIA, F.; ILKIT, M.; BOEKHOUT, T.; GABALDON, T.; PERLIN, D. S. The Quiet and Underappreciated Rise of Drug- Resistant Invasive Fungal Pathogens. Journal of Fungi, Basel, v.6, n.3, p. 1– 34, 2020. DOI: https://doi.org/10.3390/JOF6030138. ARAUJO, C. R. de; MIRANDA, K. C.; PASSOS, X. S.; SOUZA L.K. H.;, LEMOS J. de A.; KHRAIS, C. H. A.; COSTA, C. R.; SILVA, M. do R. R.; FERNANDES, O. de F. L. Identificação das leveduras do gênero candida por métodos manuais convencionaise pelo métodocromógeno chromagar candid. Revista de Patologia Tropical, v. 34, 2007. DOI:10.5216/rpt.v34i1.2135. ARRAES, A. C. P. Detecção da diversidade molecular de Candida spp. Isoladas de UTI neonatal. Dissertação (Mestrado em Biotecnologia). Salvador: Universidade Federal da Bahia, Instituto de Ciências da Sáude, 2012. 109p. BARANTSEVICH, N. E.; VETOKHINA, A.V.; AYUSHINOVA, N. I.; ORLOVA, O. E.; BARANTSEVICH, E. Candida auris Bloodstream Infections in Russia. Antibiotics, Basel, v. 9, n.9, p.557, 2020. DOI: https://doi.org/10.3390/antibiotics9090557 BARBERINO, M. G.; SILVA, N.; REBOUÇAS, C.; BARREIRO, K.; ALCÂNTARA, A.P.; NETTO E.M.; ALBUQUERQUE, L.; BRITES, C. Evaluation of blood stream infections by Candida in three tertiary hospitals in Salvador, Brazil: a case-control study. Braz J. Infect. Dis., Espana, v.10, n.1, p.36-40, Feb 2006. DOI:10.1590/s1413-86702006000100008. BAUMGARDNER, D. J. Oral Fungal Microbiota: To Thrush and Beyond Oral Fungal Microbiota: To Thrush and Beyond ILLUSTRATIVE CASE. Journal of Patient-Centered Research and Reviews, Las Vegas, v.6, n.4, p. 10–28, 2019 DOI: https://doi.org/10.17294/2330-0698.1705. 79 BENEDETTI, V. P. Isolados de Candida provenientes de pacientes diabéticos e transplantados renais : análise filogenética, avaliação da resistência ao fluconazol e polimorfismo do gene ERG11. Tese (Doutorado). Curitiba: Universidade Federal do Paraná, 2014. Disponível em: https://acervodigital.ufpr.br/handle/1884/43551. Acesso em: 12 jun 2023. BORMAN, A. M.; JOHNSON, E. M. Name changes for fungi of medical importance,2018 to 2019. Journal of Clinical Microbiology, Boston, v.59, n.2, p.1811–1831, 2021. DOI: https://doi.org/10.1128/JCM.01811-20. BRANCO, J.; MIRANDA, I. M.; RODRIGUES, A. G. Candida parapsilosis Virulence and Antifungal Resistance Mechanisms: A Comprehensive Review of Key Determinants. Journal of Fungi, Basel, v. 9, n. 1, 2023. DOI: https://doi.org/10.3390/jof9010080. BROOKS, D. R.; BILEWITCH, J.; CONDY, C.; EVANS, D. C.; FOLINSBEE, K. E.; FRÖBISCH, J.; HALAS,D.; HILL, S.; MCLENNAN, D. A.; MATTERN, M.; TSUJI, L. A.; WARD, J. L.; WAHLBERG, N.; ZAMPARO, D.; ZANATTA, D. Quantitative phylogenetic analysis in the 21st century. Revista Mexicana de Biodiversidad, México, v. 78, n. 2, 2007. CALDART, E. T.; MATA, H.; CANAL, C. W.; RAVAZZOLO, A. P. Análise filogenética: conceitos básicos e suas utilizações como ferramenta para virologia e epidemiologia molecular Phylogenetic Analysis: Basic Concepts and Its Use as a Tool for Virology and Molecular Epidemiology. Acta Scientiae Veterinariae, Rio Grande do Sul, v.44, p.1392, 2016. CHEW, K. L.; ACHIK, R.; OSMAN, N. H.; OCTAVIA, S.; TEO, J. W. P. Genomic epidemiology of human candidaemia isolates in a tertiary hospital. Microb Genom, Oxford, v.9, n.7, 2023. DOI: https://doi.org/10.1099/mgen.0.001047. CORNWELL, W.; NAKAGAWA, S. Current Biology Phylogenetic comparative methods. Current Biology, Philadelphia, v.27, p. R333–R336, 2017. DOI: https://doi.org/10.1016/j.cub.2017.03.049 CZECHOWICZ, P.; NOWICKA, J.; GOŚCINIAK, G. Virulence Factors of Candida spp. and Host Immune Response Important in the Pathogenesis of Vulvovaginal Candidiasis. International Journal of Molecular Sciences, Basel, v.23, n. 11, 2022. DOI: https://doi.org/10.3390/ijms23115895 DANESHNIA, F.; ARASTEHFAR, A.; LOMBARDI, L.; BINDER, U.; SCHELER, J.; SHAHANDASHTI, R. V.; LASS-FLÖRL, C.; MANSOUR, M. K.; BUTLER, G.; PERLIN, D. S. Candida parapsilosis isolates carrying mutations outside FKS1 hotspot regions confer high echinocandin tolerance and facilitate the development of echinocandin resistance. International Journal Antimicrobial Agents, Amsterdam, v. 62, p. 106831, 2023. DOI: https://doi.org/10.1016/j.ijantimicag.2023.106831 80 78 DE HOOG, G.S., GERRITS VAN DEN ENDE, A.H.G. Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses, Manaus, v. 41, n.5-6, p. 183-189, 1998. DEORUKHKAR, S. C.; SAINI, S.; MATHEW, S. Virulence Factors Contributing to Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile. Int. J. Microbiol., São Paulo, v.2014, p.456878, 2014. DOI: https://doi.org/10.1155/2014/456878. PINCUS, D.H.; ORENGA, S. S.; CHATELLIER, S. Yeast identification--past, present, and future methods. Medical Mycology, [s.l.], v 45, n. 2, p. 97–121, Mar 2007. DOI: https://doi.org/10.1080/13693780601059936. DHALIWAL, J. S.; MURANG, Z. R.; RAMASAMY, D. T. R.; VENKATASALU, M. R. Oral Microbiological Evidence among Palliative Patients: An Integrated Systematic Review. Indian Journal of Palliative Care, Estados Unidos, v.26, n.1, p.110-115, 2020. DOI: https://doi.org/10.4103/IJPC.IJPC_178_19. DOMÁN, M.; MAKRAI L.; BÁNYAI K. Molecular Phylogenetic Analysis of Candida krusei. Mycopathologia, [s.l.], v.187, n.4, p. 333-343, 2022. DOI: https://doi.org/10.1007/s11046-022-00640-x. DOMÁN, M.; MAKRAI, L.; VÁSÁRHELYI, B.; BALKA, G.; BÁNYAI, K. Molecular epidemiology of Candida albicans infections revealed dominant genotypes in waterfowls diagnosed with esophageal mycosis. Frontiers in Veterinary Science, Lausanne, v.10, 2023. DOI: https://doi.org/10.3389/FVETS.2023.1215624. DU, H.; BING, J.; HU, T.; ENNIS, C. L.; NOBILE, C. J.; HUANG, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathogens, United States, v.16, n.10, p.e1008921, 2020. DOI: https://doi.org/10.1371/JOURNAL.PPAT.1008921. FAN, X.; DAI, R. C.; ZHANG, S.; GENG, Y. Y.; KANG, M.; GUO, D. W.; MEI, Y. N.; PAN, Y. H.; SUN, Z. Y.; GONG, J.; XU, Y. C.; XIAO, M. Tandem gene duplications contributedto high-level azole resistance in a rapidly expanding Candida tropicalis population. Nature Communications, [s.l], v.14, n.1, 2023. DOI: https://doi.org/10.1038/S41467-023-43380-2. FARMER, D. J.; SYLVIA, D. M. Variation in the ribosomal DNA internal transcribed spacer of a diverse collection of ectomycorrhizal fungi. Mycological Research, v.102, n.7, p. 859–865, 1998. DOI: https://doi.org/10.1017/s0953756297005601. FELSENSTEIN, J. Limites de confiança nas filogenias: uma abordagem usando o bootstrap. Evolução, [s.l], v.39, p.783-791, 1985. FITZPATRICK, D. A. et al. Uma filogenia fúngica baseada em 42genomas completos derivados de superárvore e análise de genes combinados. BMC Evol. Biol., [s.l.], v. 6, p.99, 2006. DOI: https://doi.org/10.1186/1471-2148-6-99. 81 79 GABALDÓN, T.; FAIRHEAD, C. Genomas lançam luz sobre a vida secreta de Candida glabrata : nem tão assexuada, nem tão comensal. Curr. Genet., [s.l], v. 65, p. 93–98, 2019. DOI: https://doi.org/10.1007/s00294-018-0867-z. GAMA, T. M. Micobiota oral e fungemia: análise da possível relação em pacientes neonatais e pediátricos internados em UTI. 2022. 137 f. Dissertação (Mestrado em Saúde Pública) - Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, 2022. GALINDO, L. J.; LÓPEZ-GARCÍA, P.; TORRUELLA, G.; KARPOV, S.; MOREIRA, D. Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nature Communications, v.12, n.1, p.1–14, 2021. DOI: https://doi.org/10.1038/s41467-021-25308-w. GAUTAM, A. K.; VERMA, R.K.; AVASTHI, S.; SUSHMA, B. Y.; DEVADATHA, B.; NIRANJAN, M.; SUWANNARACH, N. Visão atual sobre métodos tradicionais e modernos em estimativas de diversidade fúngica. Journal of Fungi, Basel, v.8, n.3, p.226, 2022. DOI: https://doi.org/10.3390/jof8030226. GERBI, S. A. The evolution of eukaryotic ribosomal DNA. Biosystems, [s.l.], v.19, n.4, p.247–258, 1986. DOI: https://doi.org/10.1016/0303-2647(86)90001-8. GEISER, D. M.; PITT, J. I.; TAYLOR, J. W. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences, [s.l.], v. 95, n.1, p. 388–393, 1998. DOI: https://doi.org/10.1073/pnas.95.1.388. GHOYOUNCHI, R.; MAHAMI-OSKOUEI, M.; REZAMAND, A.; SPOTIN, A.; AMINISANI, N.; NAMI, S.; PIRESTANI, M.; BERAHMAT, R.; MADADI, S. Molecular Phylodiagnosis of Enterocytozoon bieneusi and Encephalitozoon intestinalis in Children with Cancer: Microsporidia in Malignancies as an Emerging Opportunistic Infection. Acta Parasitologica, Poland, v. 64, n.1, p.103–111, 2019. DOI: https://doi.org/10.2478/S11686- 018-00012-W. GIDDINGS, L. A.; NEWMAN, D. J. Extremophilic Fungi from Marine Environments: Underexplored Sources of Antitumor, Anti-Infective and Other Biologically Active Agents. Marine Drugs, Basel, v.20, n.1, p.62, 2022. DOI: https://doi.org/10.3390/MD20010062. GONG,J. et al. Emergence of Antifungal Resistant Subcladesin the Global Predominant Phylogenetic Population of Candida albicans. Microbiology Spectrum, United States,v.11, n.1, 2023. DOI: https://doi.org/10.1128/SPECTRUM.03807-22. GRISOLIA, A. Molecular Methods Developed for the Identification and Characterization of Candida Species. International Journal of Genetic Science, [s.l], v.4, n.1, p.1–6, 2017. DOI: https://doi.org/10.15226/2377-4274/4/1/00114 GUPTA, S.; PAUL, K.; KAUR, S. Diverse species in the genus Cryptococcus:Pathogens and their non-pathogenic ancestors. IUBMB Life, Phyladelphia, v.72, n.11, p. 2303–2312, 2020. DOI: https://doi.org/10.1002/IUB.2377. 82 80 HALL, T.A. BioEdit version 7.2.5. Raleigh, 1997-2001. 1 arquivo (11,5M). 2013. Disponível em: BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 7/8/Vista/XP/2000/NT. 2013. Acesso em: 10 jan. 2023. HARMON, L. Phylogenetic Comparative Methods. 2019. 234 p. Disponível em: https://lukejharmon.github.io/pcm/pdf/phylogeneticComparativeMethods.pdf. Acesso em: 12 Jun 2023. JACQUES, F.; BOLIVAR, P.; PIETRAS, K.; HAMMARLUND, E. U. Roteiro para o estudo da filogeniae evolução de genes e proteínas — Um guia prático. PLoS ONE, Estados Unidos, v.18, n.2, p.e0279597, 2023. DOI: https://doi.org/10.1371/journal.pone.0279597. JILL HARRISON, C.; LANGDALE,J. A. A step by step guide to phylogeny reconstruction. The Plant Journal : For Cell and Molecular Biology, [s.l.], v.45, n.4, p.561–572, 2006. DOI: https://doi.org/10.1111/J.1365-313X.2005.02611.X. JIN, E.; WANG, L. M.; LI, Q. Y.; FENG, X.; MA, S. L. Chronic necrotizing pulmonary aspergillosis in an immunocompetent patient: report of a rare case. Infection, [s.l.], v.42, n.3, p. 565–568, 2014. DOI: https://doi.org/10.1007/S15010-013-0575-Z. KADOSH, D.; MUNDODI, V. A Re-Evaluation of the Relationship between Morphology and Pathogenicity in Candida Species. Journal of Fungi, Basel, v.6, n.1, 2020. DOI: https://doi.org/10.3390/JOF6010013 KEAN, R.; RAMAGE, G. Combined Antifungal Resistance and Biofilm Tolerance: the Global Threat of Candida auris. MSphere, United States, v. 4, n.4, 2019. DOI: https://doi.org/10.1128/MSPHERE.00458-19. KIMURA, M. Um método simples para estimar a taxa evolutiva de substituições de bases através de estudos comparativos de sequências de nucleotídeos. Jornal de Evolução Molecular, New York, v.16, p.111-120, 1980. KOLACZKOWSKI, B.; THORNTON, J. W. Long-Branch Attraction Bias and Inconsistency in Bayesian Phylogenetics. PLoS ONE, United States, v. 4, n.12, p.e7891, 2009. DOI: https://doi.org/10.1371/journal.pone.0007891. KOTEY, F. C.; DAYIE, N. T.; TETTEH-UARCOO, P. B.; DONKOR, E. S. Candida Bloodstream Infections: Changes in Epidemiology and Increase in Drug Resistance. Infectious Diseases, [s.l.], v.14, p.117863372110269, 2021. DOI: https://doi.org/10.1177/11786337211026927 KUMAR, S.; NEI, M.; DUDLEY, J.; TAMURA, K. MEGA: a biologist-centric softwarefor evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, Oxford, v.9, n.4, p.299–306, 2008. DOI: https://doi.org/10.1093/BIB/BBN017. LEES, J. A.; KENDALL, M.; PARKHILL, J.; COLIJN, C.; BENTLEY, S. D.; HARRIS, S. R. Evaluation of phylogenetic reconstruction methods using bacterial whole genomes: a simulation based study. Wellcome Open Research, [s.l.], v . 3, n.33, 2018. DOI: https://doi.org/10.12688/WELLCOMEOPENRES.14265.2. 83 81 LOPES, J. P.; LIONAKIS, M. S. Pathogenesis and virulence of Candida albicans. Virulence, [s.l.], v.13, n.1, p. 89-121, 2022. DOI: https://doi.org/10.1080/21505594.2021.2019950. LUPATINI, M.; MELLO, A. H. de; ANTONIOLLI, Z. I. Caracterização do dna ribossômicodo isolado de Scleroderma UFSMSc1 de Eucalyptus grandis W. Hill ex-maiden. Revista Brasileira de Ciência Do Solo, [s.l], v.32, n.spe, p.2677–2682, 2008. DOI: https://doi.org/10.1590/S0100- 06832008000700010 MACEDO, E. C. O ensino de fungos e a abordagem de conteúdos conceituais, procedimentais e atitudinais nos livros didáticos de biologia aprovados pelo PNLD 2015. São Paulo: [s.n.], 2017. MATUTE, D. R.; SEPÚLVEDA, V. E. Fungal species boundaries in the genomics era. Fungal Genetics and Biology, [s.l.], v.131, p.103249, 2019. DOI: https://doi.org/10.1016/J.FGB.2019.103249. MBA, I.E.; NWEZE, E.I.; EZE, E.A.; ANYAEGBUNAM, Z. K.G. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. Infect. Genet. Evol., Amsterdam, v.99, p. 105256, Apr. 2022. DOI:10.1016/j.meegid.2022.105256. MELO, L. F de. A utilização da espectrometria de massa MALDI-TOF na identificação de microrganismos no controle de qualidade farmacêutico. Monografia - Universidade Federal de Minas Gerais, Belo Horizonte, 2014. Disponível em:. https://hdl.handle.net/1843/BUBD-9ZLG5P. Acesso em: 12 jun 2023. MENDOZA, I. L-I, de; CAYERO-GARAY, A.; QUINDÓS-ANDRÉS, G.; AGUIRRE-URIZAR, J. M. A systematic review on the implication of Candida in peri-implantitis. International Journal of Implant Dentistry, [s.l], v.7, n.1, 2021. DOI: https://doi.org/10.1186/S40729-021- 00338-7. MERSEGUEL, K.B. et al. Diversidade genética de espécies de Candida emergentes e clinicamente importantes que causam infecção invasiva. BMC Infect Dis., [s.l], v.15, p.57 2015. DOI: https://doi.org/10.1186/s12879-015-0793-3. MINH, B. Q.; SCHMIDT, H. A.; CHERNOMOR, O.; SCHREMPF, D.; WOODHAMS, M. D.; Von HAESELER, A.; LANFEAR, R.; TEELING, E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, [s.l.], v.37, n.5, p. 1530–1534, 2020. DOI: https://doi.org/10.1093/MOLBEV/MSAA015. MOHR, J.; JOHNSON, M.; COOPER, T.; LEWIS, J. S.; OSTROSKY-ZEICHNER, L. Current options in antifungal pharmacotherapy. Pharmacotherapy, [s.l.], v.28, n.5, p. 614–645, 2008. DOI: https://doi.org/10.1592/PHCO.28.5.614. MOUNT, D. W. Choosing a method for phylogenetic prediction. CSH Protocols, United Kingdom, v.4, 2008. DOI: https://doi.org/10.1101/PDB.IP49. NASCIMENTO, F. F.; REIS, M. dos; YANG, Z. A biologist’s guide to Bayesian phylogenetic analysis. Nature ecology & evolution, London, v. 1, n. 10, p. 1446–1454, 2017. 84 82 NISKANEN, T.; LÜCKING, R.; DAHLBERG, A.; GAYA, E.; SUZ, L. M.; MIKRYUKOV, V.; LIIMATAINEN,K.; DRUZHININA, I.; WESTRIP, J. R. S.; MUELLER, G. M.; MARTINS-CUNHA, K.; KIRK, P.; TEDERSOO, L.; ANTONELLI, A. Pushing the Frontiers of Biodiversity Research: Unveiling the Global Diversity, Distribution, and Conservation of Fungi. Annual Review of Environmentand Resources, [s.l],v.48, 149–176, 2023. DOI: https://doi.org/10.1146/ANNUREV- ENVIRON-112621-090937/1. NOVICK, L. R.; STULL, A. T.; CATLEY, K. M. Leitura de árvores filogenéticas: os efeitos da orientação da árvore e do processamento de texto na compreensão, BioScience, [s.l], v. 62, n. 8, ago. 2012, p.757-764. DOI: https://doi.org/10.1525/bio.2012.62.8.8. PALLOTTA, F.; VIALE, P.; BARCHIESI, F. Candida auris: the new fungal threat. Le Infezioni in Medicina, Italy, v.31, n.3, p. 323, 2023. DOI: https://doi.org/10.53854/LIIM 3103-6. PAVLOPOULOS, G. A.; SOLDATOS, T. G.; BARBOSA-SILVA, A.; SCHNEIDER, R. A referenceguide for tree analysis and visualization. BioData Mining, [s,l.], v.3, n.1, p.1–24, 2010. DOI: https://doi.org/10.1186/1756-0381-3-1/TABLES/6. PEREIRA, C. de Q. M.Identificação de espécies de fungos causadores de onicomicosesem idosos institucionalizados no município de São Bernardo do Campo. 2012. 87f. Dissertação (Mestrado em Medicina)- Universidade de São Paulo, São Paulo, 2012. Disponível em: https://doi.org/10.11606/D.5.2012.TDE-27072012-135045. Acesso em:12 jan 2023. PFALLER, M. A.; DIEKEMA, D. J. Epidemiology of Invasive Candidiasis: a PersistentPublic Health Problem. Clinical Microbiology Reviews, [s.l], v.20, n.1, p. 133, 2007. DOI: https://doi.org/10.1128/CMR.00029-06. PONDE, N. O.; LORTAL, L.; RAMAGE, G.; NAGLIK, J. R.; RICHARDSON, J. P. Candida albicans Biofilms and Polymicrobial Interactions. Critical Reviews in Microbiology, [s.l], v.47, n.1 p.91, 2021. DOI: https://doi.org/10.1080/1040841X.2020.1843400 PORTER, T.M.; GOLDING, G.B. Are similarity- or phylogeny-based methods more appropriate for classifying internal transcribed spacer (ITS) metagenomic amplicons? New Phytologyst, London, v. 192, n.3, p. 775-782, 2011. PREZOTTO, L. F. Análise do ITS1 do DNA ribossômico em espécies do complexo Anastrepha fraterculus (Diptera: Tephritidae). 2008. Dissertação (Mestrado)- Instituto de Biociências, Universidade de São Paulo, São Paulo, 2008. DOI:10.11606/D.41.2008.tde 02062008-135324. PRISTOV, K. E.; GHANNOUM, M. A. Resistance of Candida to azoles and echinocandins worldwide. Clinical Microbiology and Infection, [s.l], v.25, n.7, p.792–798, 2019. DOI: https://doi.org/10.1016/J.CMI.2019.03.028 85 83 QURASHI, S.; SALEEM, T.; KOVALENKO, I.; GOLUBYKH, K.; HOLLERAN, L. Cryptococcusneoformans Presenting as a Lung Mass in an Immunocompromised Patient. The AmericanJournal of Case Reports, States United, v.23, 2022. DOI: https://doi.org/10.12659/AJCR.936968. ARYA, N. R.; RAFIQ, N. B. Candidiasis, [s.l], p.131–136, 2023. DOI: https://doi.org/10.1007/978-3-031-15130-9_12. RAMAGE, G.; MARTÍNEZ, J. P.; LÓPEZ-RIBOT, J. L.Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Research, [s.l.], v.6, n.7, p.979–986, 2006. DOI: https://doi.org/10.1111/J.1567-1364.2006.00117.X REIS, E. M.; REIS, A. C. Nomenclatura de fungos – novo rumo “One fungus - onename” Implicações fitopatológicas do código de Melbourne. Summa Phytopathologica, São Paulo, v.50, 2024. DOI: https://doi.org/10.1590/0100-5405/282516. ROCHA, W. R. V. da; NUNES, L. E.; NEVES, M. L. R.; XIMENES, E. C. P. de A.; ALBUQUERQUE, C. P. de A. Candida genus - Virulence factores, Epidemiology, Candidiasis andResistance mechanisms. Research, Society and Development, [s.l], v.10, n.4, p.e43910414283, 2021. DOI: https://doi.org/10.33448/RSD-V10I4.14283. RODRÍGUEZ-CERDEIRA, C.; MARTÍNEZ-HERRERA, E.; CARNERO-GREGORIO, M.; LÓPEZ-BARCENAS, A.; FABBROCINI, G.; FIDA, M.; EL-SAMAHY, M.; GONZÁLEZ CESPÓN, J. L. Pathogenesis and Clinical Relevance of Candida Biofilms in Vulvovaginal Candidiasis. Frontiers in Microbiology, Irlanda, v.11, 2020. DOI: https://doi.org/10.3389/FMICB.2020.544480. ROY, S. S.; DASGUPTA, R.; BAGCHI, A. A Review on Phylogenetic Analysis: A Journey through Modern Era. Computational Molecular Bioscience, [s.l], v.4, n.3, p.39–45, 2014. DOI: https://doi.org/10.4236/CMB.2014.43005. SACHIVKINA, N.; PODOPRIGORA, I.; BOKOV, D. Morphological characteristics of Candida albicans, Candida krusei, Candida guilliermondii, and Candida glabrata biofilms, and response to farnesol. Veterinary World, [s.l.], v.14, n.6, p.1608–1614, 2021. DOI: https://doi.org/10.14202/VETWORLD.2021.1608-1614 SALAZAR, S. B.; SIMÕES, R. S.; PEDRO, N. A.; PINHEIRO, M. J.; CARVALHO, M. F. N. N.; MIRA, P. An Overview on Conventional and Non-Conventional Therapeutic Approaches for the Treatment of Candidiasis and Underlying Resistance Mechanisms in Clinical Strains. Journal of Fungi, Basel, Switzerland, v.6, n.1, 2020. DOI:https://doi.org/10.3390/JOF6010023 SANGUINETTI, M.; POSTERARO, B.; LASS-FLÖRL, C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses, v.58, Suppl 2, p.2–13, 2015. DOI: https://doi.org/10.1111/MYC.12330. 86 84 SANTOS, G. C. de O.; VASCONCELOS, C. C.; LOPES, A. J.O.; Cartágenes, M. do S. de S.; FILHO, A. K. D.; NASCIMENTO, F. R. do; RAMOS, R. M.; PIRES, E. R. R. B.; ANDRADE, M. S. de; ROCHA, F. M. G.; MONTEIRO, C. de A. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front Microbiol., [s.l.], v. 9, 2018. DOI: https://doi.org/10.3389/fmicb.2018.01351. SANYAOLU, A.; OKORIE, C.; MARINKOVIC, A.; ABBASI, A. F.; PRAKASH, S.; MANGAT, J.; HOSEIN, Z.; HAIDER, N.; CHAN, J. Candida auris: An Overview of the Emerging Drug- Resistant Fungal Infection. Infection & Chemotherapy, Taiwan, v.54, n.2, p. 236–246, 2022. DOI: https://doi.org/10.3947/IC.2022.0008. SARVER, B. A. J.; PENNELL, M. W.; BROWN, J.W.; KEEBLE, S.; HARDWICK K.M.; SULLIVAN J.; HARMO, L. J. The choice of tree prior and molecular clock does not substantiallyaffect phylogenetic inferences of diversification rates. PeerJ, [s.l.], v. 7, p. e6334, 2019. SCHOCH, C. L.; SEIFERT, K. A.; HUHNDORF, S.; ROBERT, V.; SPOUGE, J. L.; LEVESQUE, C. A.; CHEN, W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, Oman, v.109, n.16, p.6241–6246, 2012. DOI: https://doi.org/10.1073/pnas.1117018109 SCHUTZ, K.; MELIE, T.; SMITH, S. D.; QUANDT, C. A. Patterns recovered in phylogenomic analysis of Candida auris and close relatives implicate broad environmental flexibility in Candida/Clavispora clade yeasts. Microbial Genomics, [s.l.],v.10, n.4, 2024. DOI: https://doi.org/10.1099/MGEN.0.001233. SHARMA, M., Chakrabarti, A. Candidiasis and Other Emerging Yeasts. Current Fungal Infection Reports, [s.l.], v.17, n.1, p.15–24, 2023. DOI: https://doi.org/10.1007/S12281-023- 00455-3. SILVEIRA, F. P.; HUSAIN, S. Fungal infections in solid organ transplantation. Medical Mycology, [s.l.], v.45,n. 4, p.305–320, 2007. DOI: https://doi.org/10.1080/13693780701200372. SINGH, H. P.; BANSAL, P.; SH, T. Denture Stomatitis and Candida albicans in the Indian Population: A Systematic Review and Meta-Analysis. Cureus, [s.l], v.15, n.9, p.e45182, 2023. DOI: https://doi.org/10.7759/cureus.45182 SOLER, J. A. V.; CAMACHO, W. J. M.; RODRÍGUEZ, C. X. F.; MEJÍA, J. A. N.; GUERRERO, C. F.;CAMACHO, M. A. M. Aspergillus flavus endocarditis in an immunocompetent child.Case report. Medical Mycology Case Reports, [s.l.], v.22, p.48–51, 2018. DOI: https://doi.org/10.1016/J.MMCR.2018.08.003. SOKOLONSKI, A R. Activity of Propolis Extracts and Silver Nanoparticles on Candida spp. Obtained from Prosthetic Stomatitis Cases. 2019. 165f. Thesis (PhD) – Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, 2019 SUVOROV, A.; SCHRIDER, D. R.Estimativa confiável de comprimentos de galhos de árvoresusando redes neurais profundas. PLoS Comput Biol., [s.l], v.20, n.8, p.e1012337, 2024. DOI: https://doi.org/10.1371/journal.pcbi.1012337. 87 85 TALAPKO, J.; JUZBAŠIĆ, M.; MATIJEVIĆ, T.; PUSTIJANAC, E.; BEKIĆ, S.; KOTRIS, I.; ŠKRLEC, I. Candida albicans- The Virulence Factors and Clinical Manifestations of Infection. Journal of Fungi (Basel, Switzerland), v.7, n.2, p.1–19, 2021. DOI: https://doi.org/10.3390/JOF7020079 TAYLOR, M.; BRIZUELA, M.; RAJA, A. Oral Candidiasis. StatPearls, 2023. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK545282/. Acesso em: 12 jan 2023. TORTORA, G. J.; FUNKE, B. R.;CASE, C. L. Microbiologia. Porto Alegre: Artmed, 2012. TORTORANO, A. M.; PRIGITANO, A;MORRONI, G.; BRESCINI, L.; BARCHIESI, F. Candidemia: Evolution of Drug Resistance and Novel Therapeutic Approaches. Infection and Drug Resistance, [s.l], v.14, p. 5543–5553, 2021. DOI: https://doi.org/10.2147/IDR.S274872. VAGHEFI, N.; KUSCH, S.; NÉMETH, M.Z.; SERESS, D.; BRAUN, U.; TAKAMATSU, S.; PANSTRUGA, R.; KISS, L. Beyond Nuclear Ribosomal DNA Sequences: Evolution, Taxonomy, and Closest KnownSaprobic Relatives of Powdery Mildew Fungi (Erysiphaceae) Inferred From Their First Comprehensive Genome-Scale Phylogenetic Analyses. Front Microbiol., Lausanne, v.13, p.903024, June 2022. DOI:10.3389/fmicb.2022.903024. VAN THIEL, D. H.; GEORGE, M.; MOORE, C. M. Fungal Infections: Their Diagnosisand Treatment in Transplant Recipients. International Journal of Hepatology, Netherlands, v. 2012, p.1–19, 2012. DOI: https://doi.org/10.1155/2012/106923. VILGALYS, R.; HESTER, M. Rapid Genetic Identification and Mapping ofEnzymatically Amplified Ribosomal DNA from Several Cryptococcus Species. Journal of Bacteriology, United States, v.172, n.8,p.4238-4246, 1990. DOI:10.1128/jb.172.8.4238-4246.1990. VON LILIENFELD-TOAL, M.; WAGENER, J.; EINSELE, H.; CORNELY, O. A.; KURZAI, O. Invasive Fungal Infection. Deutsches Arzteblatt International, v.116, n.16, p.271–278, 2019. DOI: https://doi.org/10.3238/ARZTEBL.2019.0271. WALL, G.; MONTELONGO-JAUREGUI, D.; VIDAL BONIFACIO, B.; LOPEZ-RIBOT, J. L.; UPPULURI, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Current opinion in microbiology, London, v. 52, p. 1–6, 2019. DOI: https://doi.org/10.1016/j.mib.2019.04.001. WANG, H. Y.; KIM, J.; KIM, S.; PARK, S. D.; KIM, H. Y.; CHOI, H. K.; UH, Y.; LEE, H. Performance of PCR-REBA assay for screening and identifying pathogens directly in whole blood of patients with suspected sepsis. Journal of applied microbiology, Oxford, v.119, n.5, p.1433–1442, 2015. DOI: https://doi.org/10.1111/jam.12941. WARNASURIYA, S. D.; UDAYANGA, D.; MANAMGODA, D. S.; BILES, C. Fungi as environmental bioindicators. Sci. Total Environ., Amsterdam, v. 892, 2023. DOI: https://doi.org/10.1016/J.SCITOTENV.2023.164583. 88 WEE, L. E.; WONG, C. S. L.; TAN, A. L.; OH, H. M. L. Negative cerebrospinalfluid β-d glucan levels as an indicator for treatment cessation ahead of biochemical resolution: A case report of Candida glabrata meningitis. Medical Mycology Case Reports, [s.l.], v.32, p.47– 49, 2021. DOI: https://doi.org/10.1016/J.MMCR.2021.03.003. WHO fungal priority pathogens list to guide research, development and public health action. (n.d.). OMS, 2022. Disponível em:. https://www.who.int/publications/i/item/9789240060241. Acesso em: 12 Jan 2023. WIEDERHOLD, N. P. Emerging Fungal Infections: New Species, New Names, and Antifungal Resistance. Clinical Chemistry, Baltimore, v. 68, n.1, p. 83, 2022. DOI: https://doi.org/10.1093/CLINCHEM/HVAB217. WIJAYAWARDENE, N. N. et al. Outline of Fungi and fungus-like taxa – 2021. Mycosphere, [s.l.], v.13, n.1, p. 53–453, 2022. DOI: https://doi.org/10.5943/MYCOSPHERE/13/1/2. WILKENDORF L.S.; BOWLES, E.; BUIL, J.B.; VAN DER LEE H. A. L.; POSTERARO, B.; SANGUINETTI M.; VERWEIJ, P. E. Update on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Filamentous Fungi. J. Clin. Microbiol., United States, v.58, n.12, p. e01263-20, Nov 2020. doi:10.1128/JCM.01263- 20. WHITE JUNIOR, J. F.; MORROW, A.C. Endophyte-host associations in forage grasses. XII. A fungal endophyte ot Trichachne insularis belonging to Psedocercosporella. Mycologia, [s.l.], v. 82, n.2, p.218-226, 1990. WOESE, C. R. Bacterial evolution. Microbiological Reviews, Washington, v. 51, n.2, p. 221–271, 1987. DOI: https://doi.org/10.1128/MR.51.2.221-271.1987. YOUNG, A. D.; GILLUNG, J. P. Phylogenomics — principles, opportunities andpitfalls of big-data phylogenetics. Systematic Entomology, [s.l.], v. 45, n.2, p.225–247, 2020. DOI: https://doi.org/10.1111/SYEN.12406. ZOU, Y.; ZHANG, Z.; ZENG, Y.; HU, H.; HAO, Y.; HUANG, S.; LI, B. Métodos comuns para construção de árvores filogenéticas e sua implementação em R. Bioengenharia, [s.l.], v.11, n.5, p.480, 2024. DOI: https://doi.org/10.3390/bioengineering11050480; https://repositorio.ufba.br/handle/ri/40896

  4. 4
  5. 5

    Contributors: Mineo, Tiago Wilson Patriarca, http://lattes.cnpq.br/4014578382806189, Martins, Caroline Mota, http://lattes.cnpq.br/3838670015606212, Leite, Shiraz Feferbaum, http://lattes.cnpq.br/4217598639172800, Almeida, Marcos Paulo Oliveira, http://lattes.cnpq.br/0098807540957611

    File Description: application/pdf

    Relation: LOPES, Marya Fernanda Santos. MicroRNAs controlam a infecção por Toxoplasma gondii e Neospora caninum in vitro. 2024. 52 f. Trabalho de Conclusão de Curso (Graduação em Biotecnologia) – Universidade Federal de Uberlândia, Uberlândia, 2025.; https://repositorio.ufu.br/handle/123456789/44759

  6. 6
  7. 7
  8. 8
  9. 9

    Contributors: Cunha Júnior, Jair Pereira Da, https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4795802Y5&tokenCaptchar=03AFcWeA4lcxXa6OJSJBws2nfa78xRuIqLliav7v8iq1as6krZPcN_-EAz6RVT6wtV_BCKI9MYytaBGYkdRN0rEMfP4Kh157dNlcaGHXOdYLYOP2uGVK6GcaaXA2FQs14Tb9Mf7cIpmiaICqfz3RcXzUqBx4o9xkVK1F52CWmVDPXlubVJM8TM29uzC74j1CAjggqtNGK_rLZHZbO5lut6D7RQGoMr64xw49J-6ehUqEMiKGosfCtIysXm9RlcMti4jCt__JCO5ej9s83Ii4HX039xfY3ODte2DUpTrN4B2R-g9AAXHsq95miVyPlmGa_4kmbDieYXTz1qDQoS6FerXO8sW9mg4VOiOYBZs_6SB_LrP8oXn9uN26d4pTgsmThbiia1kortCcDnR9P8nxZRX7B_VkuwgnVK8FDlwn3MgNfgXCm78AvgTopb5Wd3IGnWhwcXgKOQMIe7aUjbcz1YSO3M4y7S7mwqYUeZLVwkIzINM7vJki9t0SK0hmdC-HR5UdcIppbfiKMk_MFVr-Pwfp_peDkBxaNBRQDal7Iwyv2IOhNNFIewqMFW3qfsE0kUav0pu6UWrYLanLnxdCyJ7sPd9clMwjZgDlQ4buu-bRVV88t8QiXiWcNDBfTy9YevYhYee0qo1_U4_adQ7sJk6OUaH7WCtXEhYQ, Silva, Neide Maria da, https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4703578Z1&tokenCaptchar=03AFcWeA5QlJGU5kNMritNUN1cl0PZyro9at_IeOU6UiGTBd7CXkT81sJfbdXq_5xEU4ZA1zXwoEbhGdJqlJOmeTCrIYWslVmbKq16rVgKeVeNyDi296qwXRF5lrUyOB7tVTyTVNbbToZheTJu7GSwy2Tg7CkAgoDzOl2AMVQ7wtzy_QloDVeDk8A_JIGBeKBczdNwV9EFJM44sYHSdziTIaMhZKtaCPkt9u1yfNyzfTrLARpR4aiVcodu7PsSbJZEvjwg9X-328S3GRxPmaH-vuzzkT4A__-NfSzfdJ0s7a13JAfUla5grqHCykAki-_HVJgwn9_ARABsyIMzO5B06t0Dc_yeLdHu3zkurn0H0hTqWsmiJQXxH6huVGSmKIZBcPuV7mdm1-lknuzn14A0thAOT-vmoVSN86QmT0K6fsgPApLwvw4hnGrGCpJHNCHDWKhCbaEU071TCTr92jdTOCrIiCFs-_aryrlnzlq3lZbi7MMGhhlKDoKOzCOJ77FvLnAIPaDGwCca-Mz2ZaoK-1328F9985-DawKB9mjN7TUBb3yWd0S6Uq9XzOz1FYJDXop2tdQ29_R1EOuJnWbDerWa2hKWwjvA17dJiBVGgu-E-jMbZqKIllslbawmnjVBMeZdqG2ocznU, Silva, Elisângela Rosa da, https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4700333A8&tokenCaptchar=03AFcWeA5DEI_S83idpiZivfstRL6tmjN87-lsQbOOGA-t0qm1FaKpOWj_8V4d1uzqfAQTiJReh_wJ7Scszv8wH0cEkToDHfr6U4GpF6NFYAIqxHbtxjlX5d-lFpi4tEeX1GPoGNPTICBbxE4dPucwKTI646z0mJk3AuoSZRNWDdwPEoMH_Po0LzhmEU1KylhTCdK9tu0sAzjfxK5WDKTpJpl79LVZBXxdbzFm8_i2Pxg4uABAJqpwF1gKuLqUOcDMZNzXOyAqhKR41FwosdSvzFhXlSbhxWTXnxxWIziVjwNhTi8RN6sNxSr7mzCcz6r9rhb5OXNx9xR5dfopMh6JzLGR2l07Juk23i9a9pkYyX49fG7xut5DP_q9aQkB16_WkZ5E2c9wy5viNfup1062EehXIN4Alviwt39GGP5WsNfJzjg_xkGlOc-YwAWDwyqp9hXO0LpDmgIXUR3WxhL6XQIqI7ooByTkzRZlTRPK6tAQMsTksk1zeH_WLuZsVFIe4TPY6PAzPSg5ds3buLNEvMJI2RrObr8ptgi6dRWFyVUMsk7CxZvzEbGU8ZfEhZzexsAW0wrg1Y_jlhS3asfn_HHLogVFH-072M1F0mvrKLuTNQt8n8331gcGexyNRL1PSJ0d5hzvdw3vHzjjQJC9nq4CFz-m2mJJLw, Vidal, Newton de Medeiros, https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777851D4&tokenCaptchar=03AFcWeA4aHbITcPqvPaiGnRfk1P88CSqHUcHjfBaJ1GUtPjQ0HXrIIgWkOAY_ZeVxHT8LTZ4SacQOUzUGyuMWH-50henMQ3psK8UZhNEqtLkClq2kn2Y0BYZplhc-ERdvYC6B2ZsD6FrzdgV_7vAqZgciRU9Fu7nnAjlRljmxhltVKHH3anix2_na6A6Hf0s2_rCkrJ1L-hMDXPxC7TpVOgmN1IWJVxy0UE_omH5mQafXYExeHQkcOUIkDRM1bbwbzMHxfdvj9lbOoEbmCMkL0YQ2Wg0nJaW2NjhcWi7JgObkjYnENKdL7o7tP5h-52PYJ5dwsvQmB3NnxB-OEXGf83GI77FvWQxtFeBsEW_nkJhwems9h2Nk5Yj05jHlg05IRJV9-JyEuAdJRWHNnysBnVNTBqj_HWAijRAR-H1_wdzP2HEDwT3Zpf1z50rwxIAA08hv44t3EK37HqILYEXOsJFLwNYsrK2qjVi0-MSzrvD00gFUZsFJMRIqnBizAy1N3JMjyAhpH63y4CpCFBe5y9qieZ_jKFMth20Jcey-isMOBcxFvGWlR_vXchtuVn5RtXT3ki8uVX4Zr6MZXSAnyNpSI_EhcBZyViZAOKdFl6tN9liLOd9L0SC1zQw3NJFLHPw5d_5fp-Z3

    File Description: application/pdf

  10. 10

    Contributors: Polli, Mayara Garcia, http://lattes.cnpq.br/2676753263236037, Yokosawa, Jonny, http://lattes.cnpq.br/3861685470927473, Bastos, Victor Alexandre Félix, http://lattes.cnpq.br/2218992980649236, Peixoto, Luiz Felipe Fernandes, http://lattes.cnpq.br/7482090738261476

    File Description: application/pdf

    Relation: GARREFA, Isadora de Cássia. Expressão e purificação da outer membrane protein A (OmpA) de Rickettsia rickettsii expressa em sistema bacteriano. 2023. 37 f. Trabalho de Conclusão de Curso (Graduação em Biotecnologia) – Universidade Federal de Uberlândia, Uberlândia, 2023.; https://repositorio.ufu.br/handle/123456789/38669

  11. 11

    Contributors: Martins, Carlos Henrique Gomes, http://lattes.cnpq.br/8076024656192550, Royer, Sabrina, http://lattes.cnpq.br/2848812662814026, Queiroz, Lícia Ludendorff, http://lattes.cnpq.br/1845791035362486, Almeida Junior, Elias Rodrigues de, http://lattes.cnpq.br/0070925120450278

    File Description: application/pdf

    Relation: BASTOS, Clara Mariano. Genotipagem de Pseudomonas aeruginosa isoladas de água de hemodiálise. 2023. 16 f. Trabalho de Conclusão de Curso (Graduação em Biomedicina) – Universidade Federal de Uberlândia, Uberlândia, 2023.; https://repositorio.ufu.br/handle/123456789/39873

  12. 12
  13. 13
    Dissertation/ Thesis

    Contributors: Castellucci, Léa Cristina, orcid:0000-0002-9625-2469, http://lattes.cnpq.br/6921235090872091, Machado, Paulo Roberto Lima, orcid:0000-0003-1894-6171, http://lattes.cnpq.br/7641162535517337, Takenami, Iukary Oliveira, orcid:0000-0001-5660-7766, http://lattes.cnpq.br/5629405326727831, Schriefer, Nicolaus Albert Borges, orcid:0000-0002-5496-6789, http://lattes.cnpq.br/3427260889880733

    File Description: application/pdf

    Relation: ACHUTHAN A, MASENDYCZ P, LOPEZ JA et al., Regulation of the endosomal SNARE protein syntaxin 7 by colony-stimulating factor 1 in macrophages. Mol Cell Biol. 2008;28(20):6149-6159. doi:10.1128/MCB.00220-08 ALVES ACR, LEMOS GS, PAIVA PDR, Perfil socioeconômico dos pacientes atendidos pelo Centro de Referência em Reabilitação da Hanseníase da Zona da Mata Mineira. HU Rev, 2017; 43(2):99-104. AN W, YAO S, SUN X, et al., Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the de-ubiquitinase USP40 to stabilize CFLARL and inhibit apoptosis in human non-small cell lung cancer cells. J Exp Clin Cancer Res. 2019;38(1):181. Published 2019 May 2. doi:10.1186/s13046-019-1182-3 ARAI M, GENDA Y, ISHIKAWA M, SHUNSUKE T, OKABE T, SAKAMOTO A, The miRNA and mRNA changes in rat hippocampi after chronic constriction injury. Pain Med, 2013, 14(5):720-9. doi:10.1111/pme.12066. AVANZI C, SINGH P, TRUMAN RW, SUFFYS PN, Molecular epidemiology of leprosy: An update. Infect Genet Evol, 2020 Dec;86:104581. doi:10.1016/j.meegid.2020.104581. Epub 2020 Oct 4. PMID: 33022427. BARBOSA MGdeM, SILVA BJdeA, ASSIS TQ, PRATA RBdaS, FERREIRA H, ANDRADE PR, OLIVEIRA JAdaPde, SILVA GMSda, NERY JAdaC, SARNO EM, PINHEIRO RO, Autophagy Impairment Is Associated With Increased Inflammasome Activation and Reversal Reaction Development in Multibacillary Leprosy. Front. Immunol, 2018, 9:1223. http://doi:10.3389/fimmu.2018.01223 BARTEL DP, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, v. 116, p. 281- 297, 2004. https://doi.org/10.1016/S0092-8674(04)00045-5 BELACHEW WA, NAAFS B, Position statement: LEPROSY: Diagnosis, treatment and follow-up. 03 April 2019. https://doi.org/10.1111/jdv.15569 BERTHELOOT D, LATZ E, FRANKLIN BS, Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021 May;18(5):1106-1121. Epub 2021 Mar 30. PMID: 33785842; PMCID: PMC8008022. doi:10.1038/s41423-020-00630-3. BHANDARI J, AWAIS M, ROBBINS BA, GUPTA V, Leprosy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559307/ BOLDIN MP, TAGANOV KD, RAO DS, YANG L, ZHAO JL, KALWANI M et al., miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 2011; 208(6):1189-201. doi:10.1084/jem.20101823. ___.BRASIL, Protocolo Clínico e Diretrizes Terapêuticas da Hanseníase, 2022. Disponível em: https://www.gov.br/conitec/pt-br/midias/protocolos/20220818_pcdt_hanseniase.pdf ___.BRASIL, Leprosy Epidemiological Record 2023, 2023, Número Especial, Jan, 2023. ISSN: 9352-7864. Disponível em: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/especiais/2023/boletim_hanseniase-2023_internet_completo.pdf/view ___.BRASIL, Secretaria de Vigilância em Saúde Departamento de Vigilância e Doenças Transmissíveis, 2017. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/guia_pratico_hanseniase.pdf ___.BRASIL, SECRETARIA DE CIÊNCIA, TECNOLOGIA, INOVAÇÃO E INSUMOS ESTRATÉGICOS EM SAÚDE, 2022. https://www.gov.br/conitec/pt-br/midias/protocolos/20220818_pcdt_hanseniase.pdf BRITO de SOUZA VN, IYER AM, LAMMAS DA, NAAFS B, DAS PK, Advances in leprosy immunology and the field application: A gap to bridge. Clin Dermatol. 2016 Jan-Feb;34(1):82-95. doi:10.1016/j.clindermatol.2015.10.013. Epub 2015 Nov 6. PMID: 26773628. BROUWER I, LENSTRA TL, Visualizing transcription: key to understanding gene expression dynamics, Current Opinion in Chemical Biology, Volume 51, 2019, Pages 122-129, ISSN 1367-5931, https://doi.org/10.1016/j.cbpa.2019.05.031. CASTELLUCCI LC, ALMEIDA L, CHERLIN S et al., A Genome-wide Association Study Identifies SERPINB10, CRLF3, STX7, LAMP3, IFNG-AS1, and KRT80 As Risk Loci Contributing to Cutaneous Leishmaniasis in Brazil. Clin Infect Dis. 2021;72(10):e515-e525. doi:10.1093/cid/ciaa1230 CEZAR-de-MELLO PF, TOLEDO-PINTO TG, MARQUES CS, ARNEZ LE, CARDOSO CC, GUERREIRO LT, ANTUNES SL, JARDIM MM, COVAS Cde J, ILLARAMENDI X, DIAS-BAPTISTA IM, ROSA PS, DURÃES SM, PACHECO AG, RIBEIRO-ALVES M, SARNO EN, MORAES MO. Pre-miR-146a (rs2910164 G>C) single nucleotide polymorphism is genetically and functionally associated with leprosy. PLoS Negl Trop Dis. 2014 Sep 4;8(9):e3099. http://doi:10.1371/journal.pntd.0003099. PMID: 25187983; PMCID: PMC4154665. CHATTREE V, KHANNA N, BISHT V, RAO DN. Liposomal delivery of Mycobacterium leprae antigen(s) with murabutide and Trat peptide inhibits Fas-mediated apoptosis of peripheral blood mononuclear cells derived from leprosy patients. Indian J Biochem Biophys. 2007 Oct;44(5):386-93. PMID: 18341215. COONEY R, BAKER J, BRAIN O, DANIS B, PICHULIK T, ALLAN P, FERGUSON DJ, CAMPBELL BJ, JEWELL D, SIMMONS A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010 Jan;16(1):90-7. http://doi:10.1038/nm.2069. Epub 2009 Dec 6. PMID: 19966812. DIVEP/SESAB, 2023. Boletim Epidemiológico de Hanseníase - Detecção Geral. Nº 01 - Janeiro de 2023. Disponível em: https://www.saude.ba.gov.br/wp-content/uploads/2017/11/boletimHanseniaseGeral_No_01_janeiro2023.pdf DOMINGOS J, COELHO T, TAIPA R, BASTO JP, MELO-PIRES M, MAGALHÃES MJ, PARK2 presenting as a disabling peripheral axonal neuropathy. Neurol Sci. 2015;36(2):341-343. doi:10.1007/s10072-014-1898-y DONATE PB, ALVES DE LK, PERES RS, ALMEIDA F, FUKADA SY, SILVA TA et al. Cigarette smoke induces miR-132 in Th17 cells that enhance osteoclastogenesis in inflammatory arthritis. Proc Natl Acad Sci USA. 2021;118(1):e2017120118. doi:10.1073/pnas.2017120118. DUCATTI I. A hanseníase no Brasil na era Vargas e a profilaxia do isolamento compulsório: estudos sobre o discurso científico legitimador. 2009. Tese (Doutorado em História Social) - Faculdade de Filosofia, Letras e Ciências Humanas, Universidade de São Paulo, São Paulo, 2009. doi:10.11606/T.8.2009.tde-09032009-171024. Acesso em: 2023-07-19. EBENEZER GJ, SCOLLARD DM. Treatment and Evaluation Advances in Leprosy Neuropathy. Neurotherapeutics 18, 2337–2350 (2021). https://doi.org/10.1007/s13311-021-01153-z . Epub 2021 Nov 19. PMID: 34799845; PMCID: PMC8604554 ELLERTSEN LK, WIKER HG, EGEBERG NT, HETLAND G; Allergic Sensitisation in Tuberculosis and Leprosy Patients. Int Arch Allergy Immunol 1 November 2005; 138 (3): 217–224. https://doi.org/10.1159/000088722 FAIZ A, HEIJINK IH, VERMEULEN CJ, et al., Cigarette smoke exposure decreases CFLAR expression in the bronchial epithelium, augmenting susceptibility for lung epithelial cell death and DAMP release. Sci Rep. 2018;8(1):12426. Published 2018 Aug 20. doi:10.1038/s41598-018-30602-7 FANG L, WU HM, DING PS, LIU RY. TLR2 mediates phagocytosis and autophagy through JNK signaling pathway in Staphylococcus aureus-stimulated RAW264.7 cells. Cell Signal. 2014 Apr;26(4):806-14. http://doi:10.1016/j.cellsig.2013.12.016. Epub 2014 Jan 8. PMID: 24412754. FARAG AGA, LABEEB AZ, GERGES ANA, ELSHAIB ME. Interleukin-17A in Egyptian leprosy patients: a clinical, genetic, and biochemical study. Anais Brasileiros de Dermatologia, Volume 97, Issue 6, 2022. Pages 735-741, ISSN 0365-0596, https://doi.org/10.1016/j.abd.2021.09.016. FAVA VM, DALLMANN-SAUER M, SCHURR E. Genetics of leprosy: today and beyond. Hum Genet. 2020; 139(6-7):835-846. doi:10.1007/s00439-019-02087-5. FROES JUNIOR LAR, SOTTO MN, TRINDADE MAB. Leprosy: clinical and immunopathological characteristics. Anais Brasileiros de Dermatologia, Volume 97, Issue 3, 2022, Pages 338-347, ISSN 0365-0596, https://doi.org/10.1016/j.abd.2021.08.006. FULCO TdeO, ANDRADE PR, BARBOSA MGdeM, PINTO TG, FERREIRA PF, FERREIRA H, NERY JAdaC , REAL SC, BORGES VM, MORAES MO, SARNO EN, SAMPAIO EP, PINHEIRO RO. Effect of apoptotic cell recognition on macrophage polarization and mycobacterial persistence. Infect Immun. 2014 Sep;82(9):3968-78. http://doi:10.1128/IAI.02194-14. Epub 2014 Jul 14. PMID: 25024361; PMCID: PMC4187838. GASCHIGNARD J, GRANT AV, THUC NV, ORLOVA M, COBAT A, HUONG NT, BA NN, THAI VH, ABEL L, SCHURR E, ALCAÏS A. 2016. Pauci- and Multibacillary Leprosy: Two Distinct, Genetically Neglected Diseases. PLoS Negl Trop Dis 10(5): e0004345. https://doi.org/10.1371/journal.pntd.0004345 GENG J, KLIONSKY DJ. The ATG8 and ATG12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 2008 Sep;9(9):859-64. doi:10.1038/embor.2008.163. PMID: 18704115; PMCID: PMC2529362. HA M, KIM VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24. doi:10.1038/nrm3838. Epub 2014 Jul 16. PMID: 25027649. HAN XY, SEO YH, SIZER KC et al., A new Mycobacterium species causing diffuse lepromatous leprosy. Am J Clin Pathol. 2008;130(6):856-864. doi:10.1309/AJCPP72FJZZRRVMM HASAN Z, ASHRAF M, TAYYEBI A, HUSSAIN R. M. leprae inhibits apoptosis in THP-1 cells by downregulation of Bad and Bak and upregulation of Mcl-1 gene expression. BMC Microbiol. 2006 Sep 18;6:78. http://doi:10.1186/1471-2180-6-78. PMID: 16978419; PMCID: PMC1592106. HASTINGS RC, GILLIS TP, KRAHENBUHL JL, FRANZBLAU SG. Leprosy. Clin Microbiol Rev. 1988 Jul;1(3):330-48. doi:10.1128/CMR.1.3.330. PMID: 3058299; PMCID: PMC358054. HUSSEIN A, Mohammed H, Eltahir A, A.Sidig, Gadour MOH. 2010. Frequency of neurological deficits in Sudanese lepromatic patients. Vol. 5, N°. 1, Mar 2010. http://doi:10.4314/sjms.v5i1.56025 JACOB JT, FRANCO-PAREDES C. The Stigmatization of Leprosy in India and Its Impact on Future Approaches to Elimination and Control. PLoS Negl Trop Dis 2(1): e113. https://doi.org/10.1371/journal.pntd.0000113. 2008 JORGE KTOS, SOUZA RP, ASSIS MTA, ARAÚJO MG, LOCATI M, JESUS AMR, DIAS BAPTISTA IMF, LIMA CX, TEIXEIRA AL, TEIXEIRA MM, SORIANI FM. 2017. Characterization of microRNA expression profiles and identification of potential biomarkers in leprosy. J Clin Microbiol 55:1516 –1525. https://doi.org/10.1128/JCM .02408-16. JUNIOR FLAR, SOTTO MN, TRINDADE MAB. Leprosy: clinical and immunopathological characteristics. Anais Brasileiros de Dermatologia, Volume 97, Issue 3, 2022. Pages 338-347, ISSN 0365-0596, https://doi.org/10.1016/j.abd.2021.08.006. KACZYNSKI TJ et al., Dysregulation of a lncRNA within the TNFRSF10A locus activates cell death pathways. Cell Death Discov. 2023 Jul 13;9(1):242. doi:10.1038/s41420-023-01544-5. PMID: 37443108; PMCID: PMC10344863. KAHAWITA IP, WALKER SL, LOCKWOOD DNJ, Leprosy type 1 reactions and erythema nodosum leprosum. An Bras Dermatol. 2008; 83(1):75–82. https://doi.org/10.1590/S0365-05962008000100010 KAMATH S, VACCARO SA, REA TH, OCHOA MT, Recognizing and managing the immunologic reactions in leprosy. J Am Acad Dermatol. 2014 Oct;71(4):795-803. doi:10.1016/j.jaad.2014.03.034. Epub 2014 Apr 24. PMID: 24767732. KIM JK, YUK JM, KIM SY, KIM TS, JIN HS, YANG CS, JO EK, MicroRNA-125a Inhibits Autophagy Activation and Antimicrobial Responses during Mycobacterial Infection. J Immunol. 2015 Jun 1;194(11):5355-65. http://doi:10.4049/jimmunol.1402557. Epub 2015 Apr 27. PMID: 25917095. KIM V, MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376–385 (2005). https://doi.org/10.1038/nrm1644 LIANG J, CAO R, WANG X, ZHANG Y, WANG P, GAO H, LI C, YANG F, ZENG R, WEI P, LI D, LI W, YANG W, Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing BCL2. Cell Res. 2017 Mar;27(3):329-351. doi:10.1038/cr.2016.159. Epub 2016 Dec 30. PMID: 28035139; PMCID: PMC5339831. LIAO D, Chapter 1 - Apoptosis, necroptosis, and pyroptosis in health and disease: an overview of molecular mechanisms, targets for therapeutic development, and known small molecule and biologic modulators. Mechanisms of Cell Death and Opportunities for Therapeutic Development 2022;1-46. doi.org/10.1016/B978-0-12-814208-0.00008-7. LI H, LI L, QIU X, ZHANG J, HUA Z, The interaction of CFLAR with p130Cas promotes cell migration. Biochim Biophys Acta Mol Cell Res. 2023;1870(2):119390. doi:10.1016/j.bbamcr.2022.119390 LI J, TONG Y, ZHOU Y, et al., LncRNA KCNQ1OT1 as a miR-26a-5p sponge regulates ATG12-mediated cardiomyocyte autophagy and aggravates myocardial infarction. Int J Cardiol. 2021;338:14-23. doi:10.1016/j.ijcard.2021.05.053 LI T, SU L, LEI Y, LIU X, ZHANG Y, LIU X, DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress-mediated Apoptosis in Human Lung Cancer Cells. J Biol Chem. 2015;290(17):11108-18. doi:10.1074/jbc.M115.645333. LIU PT, WHEELWRIGHT M, TELES R, KOMISOPOULOU E, EDFELDT K, FERGUSON B, MEHTA MD, VAZIRNIA A, REA TH, SARNO EN, GRAEBER TG, MODLIN RL, MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy. Nat Med. 2012 Jan 29;18(2):267-73. http://doi:10.1038/nm.2584. PMID: 22286305; PMCID: PMC3274599. LOCKWOOD DNJ, Leprosy. BMJ Clin Evid. 2007 Apr 1; 2007:0915. PMID: 19454067; PMCID: PMC2943824. MACHADO PR, MACHADO LM, SHIBUYA M, REGO J, JOHNSON WD, GLESBY MJ, Viral Co-infection and Leprosy Outcomes: A Cohort Study. PLoS Negl Trop Dis. 2015 Aug 12;9(8):e0003865. doi:10.1371/journal.pntd.0003865. PMID: 26267882; PMCID: PMC4534371. MANZANILLO PS, AYRES JS, WATSON RO, COLLINS AC, SOUZA G, RAE CS et al., The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013;501(7468): 512-516. doi.org/10.1038/nature12566. MAROTTA M, DALLOLIO L, TONI G, TONI F, LEONI E, Diagnosis of leprosy in a Nigerian migrant: implementation of surveillance measures in the current migration context. Ann Ig. 2020 Jul-Aug;32(4):336-343. doi:10.7416/ai.2020.2357. PMID: 32744292. MAYMONE MBC, LAUGHTER M, VENKATESH S, DACSO MM, RAO PN, STRYJEWSKA BM, HUGH J, DELLAVALLE RP, DUNNICK CA, Leprosy: Clinical aspects and diagnostic techniques. J Am Acad Dermatol. 2020 Jul;83(1):1-14. doi:10.1016/j.jaad.2019.12.080. Epub 2020 Mar 27. PMID: 32229279. METLAPALLY R, GONZALEZ P, HAWTHORNE FA, TRAN-VIET K-N, WILDSOET CF, YOUNG TL, Scleral Micro-RNA Signatures in Adult and Fetal Eyes. PLoS ONE, 2013, 8(10): e78984. http://doi:10.1371/journal.pone.0078984 MINUZZO DA, O Homem Paciente de Hanseníase (Lepra): Representação Social, Rede Social Familiar, Experiência e Imagem Corporal. 140 f. Dissertação (Mestrado em Políticas de Bem-Estar em perspectiva: evolução, conceitos e actores), Universidade de Évora, Évora, 2008. MI Z, LIU H, ZHANG F, Advances in the Immunology and Genetics of Leprosy. Sec. Microbial Immunology. Front. Immunol., 16 April 2020. Volume 11 - 2020 https://doi.org/10.3389/fimmu.2020.00567 MIZUNO Y, More than 20 years of the discovery of PARK2. Neuroscience Research, Volume 159, 2020, Pages 3-8, ISSN 0168-0102, https://doi.org/10.1016/j.neures.2020.02.002. MIZUSHIMA N, The ATG conjugation systems in autophagy. Current Opinion in Cell Biology, Volume 63, 2020, Pages 1-10, ISSN 0955-0674, https://doi.org/10.1016/j.ceb.2019.12.001 MOHR R, ÖZDIRIK B, LAMBRECHT J, DEMIR M, ESCHRICH J, GEISLER L, HELLBERG T, LOOSEN SH, LUEDDE T, TACKE F, HAMMERICH L, RODERBURG C, From Liver Cirrhosis to Cancer: The Role of Micro-RNAs in Hepatocarcinogenesis. International Journal of Molecular Sciences. 2021; 22(3):1492. https://doi.org/10.3390/ijms22031492 MOHAMMAD AS, MARIAM A AL-FADHLI, JAFAR AQ, Diabetic status of patients with leprosy in Kuwait. Journal of Infection and Public Health, Volume 5, Issue 5, 2012, Pages 360-365, ISSN 1876-0341, https://doi.org/10.1016/j.jiph.2012.08.001 MORI K et al., TNFRSF10A downregulation induces retinal pigment epithelium degeneration during the pathogenesis of age-related macular degeneration and central serous chorioretinopathy. Hum Mol Genet. 2022 Jul 7;31(13):2194-2206. doi:10.1093/hmg/ddac020. PMID: 35103281. MUNGROO MR, KHAN NA, SIDDIQUI R, Mycobacterium leprae: Pathogenesis, diagnosis, and treatment options. Microbial Pathogenesis, Volume 149, 2020, 104475, ISSN 0882-4010, https://doi.org/10.1016/j.micpath.2020.104475. MURCHISON EP, HANNON GJ, miRNAs on the move: miRNA biogenesis and the RNAi machinery. Current Opinion in Cell Biology, Volume 16, Issue 3, 2004. Pages 223-229, ISSN 0955-0674, https://doi.org/10.1016/j.ceb.2004.04.003. MURROW L, DEBNATH J, ATG12-ATG3 connects basal autophagy and late endosome function. Autophagy. 2015;11(6):961-2. doi:10.1080/15548627.2015.1040976. PMID: 25998418; PMCID: PMC4502820. NATH I, SAINI C, VALLURI VL, Immunology of leprosy and diagnostic challenges. Clinics in Dermatology, Volume 33, Issue 1, 2015. Pages 90-98, ISSN 0738-081X, https://doi.org/10.1016/j.clindermatol.2014.07.005. O'CONNELL RM, RAO DS, BALTIMORE D, microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30:295-312. doi:10.1146/annurev-immunol-020711-075013. Epub 2012 Jan 3. PMID: 22224773. O'NEILL LA, SHEEDY FJ, MCCOY CE, MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011;11(3):163-75. doi:10.1038/nri2957. OLIVEIRA RB, OCHOA MT, SIELING PA, REA TH, RAMBUKKANA A, SARNO EN, MODLIN RL, Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun, 2003 Mar;71(3):1427-33. http://doi:10.1128/IAI.71.3.1427-1433.2003. PMID: 12595460; PMCID: PMC148832. PARVEEN S, KHAMARI A, RAJU J, COPPOLINO MG, DATTA S, Syntaxin 7 contributes to breast cancer cell invasion by promoting invadopodia formation. J Cell Sci. 2022;135(12):jcs259576. doi:10.1242/jcs.259576 PATTU V, QU B, MARSHALL M, BECHERER U, JUNKER C, MATTI U, et al., Syntaxin7 is required for lytic granule release from cytotoxic T lymphocytes. Traffic 2011;12(7):890-901. doi:10.1111/j.1600-0854.2011.01193.x. PENG Y, CROCE C, The role of MicroRNAs in human cancer. Sig Transduct Target Ther 1, 15004 (2016). https://doi.org/10.1038/sigtrans.2015.4 PERRY MM, MOSCHOS SA, WILLIAMS AE, SHEPHERD NJ, LARNER-SVENSSON HM, LINDSAY MA, Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 2008;180(8):5689-98. doi:10.4049/jimmunol.180.8.5689. PRAGASAM V, VASUDEVAN B, MOORCHUNG N, Cytokine gene polymorphisms in type I and type II reactions in Hansen's disease. Indian J Dermatol Venereol Leprol. 2020 Sep-Oct;86(5):482-488. doi:10.4103/ijdvl.IJDVL_619_18. PMID: 32372760. RADOSHEVICH L, DEBNATH J, ATG12-ATG3 and mitochondria. Autophagy. 2011 Jan;7(1):109-11. doi:10.4161/auto.7.1.13998. Epub 2011 Jan 1. PMID: 21068544; PMCID: PMC3039733. RANDHAWA A, KAPILA R, AND SCHWARTZ RA, Leprosy: what is new. Int J Dermatol, 2022, 61: 733-738. https://doi.org/10.1111/ijd.15998 RÊGO JL, Genes de resposta imune no desenvolvimento de episódios reacionais na hanseníase. 2018. Tese (Doutorado em Ciências da Saúde) - Universidade Federal da Bahia. RÊGO JL, SANTANA NL, AGUIAR ER, QUEIROZ IS, CARVALHO LP, MACHADO PRL, et al., Serum immune markers as triggers of reactional episodes in multibacillary patients with leprosy. Leprosy Review 2020;91(4), 393-402. doi:10.47276/lr.91.4.393.RIBEIRO MDA, SILVA JCA, OLIVEIRA SB. Estudo epidemiológico da hanseníase no Brasil: reflexão sobre as metas de eliminação. Rev Panam Salud Publica. 2018;42:e42. https://doi.org/10.26633/RPSP.2018.42 RIDLEY DS, JOPLING WH, Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966;34(3):255-73. PMID: 5950347. ROCHA DC, GARCÊS-FILHO AQ, CUNHA AMA, MONTE RC, OLIVEIRA IS, FERREIRA IG, MONTEIRO WM, CERNI FA, PUCCA MB, Leprosy Overview: Pathophysiology, Immune Responses, and Epidemiology in Brazil. Biomed J Sci & Tech Res 48(4)-2023. BJSTR. MS.ID.007676. http://doi.org/10.26717/BJSTR.2023.48.007676 RODRIGUES de SOUSA J, MAGNO FALCÃO LF, VIRGOLINO GL, et al., Different cell death mechanisms are involved in leprosy pathogenesis. Microb Pathog. 2022;166:105511. doi:10.1016/j.micpath.2022.105511 RODRIGUES JÚNIOR IA, GRESTA LT, NOVIELLO MDE L, CARTELLE CT, LYON S, ARANTES RM, Leprosy classification methods: a comparative study in a referral center in Brazil. Int J Infect Dis. 2016;45:118-122. doi:10.1016/j.ijid.2016.02.018 RUBINSTEIN AD, EISENSTEIN M, BER Y, BIALIK S, KIMCHI A, The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 2011;44(5):698-709. doi:10.1016/j.molcel.2011.10.014. SALGADO CG, PINTO P, BOUTH RC, GOBBO AR, MESSIAS ACC, SANDOVAL TV, dos SANTOS AMR, MOREIRA FC, VIDAL AF, GOULART LR, BARRETO JG, da SILVA MB, FRADE MAC, SPENCER JS, SANTOS S, RIBEIRO-dos-SANTOS Â, miRNome Expression Analysis Reveals New Players on Leprosy Immune Physiopathology. Front Immunol. 2018 Mar 9;9:463. http://doi:10.3389/fimmu.2018.00463. PMID: 29593724; PMCID: PMC5854644. SARKAR RK, PRADHAN S, Leprosy and women. International Journal of Women's Dermatology, Volume 2, Issue 4, 2016, Pages 117-121, ISSN 2352-6475.https://doi.org/10.1016/j.ijwd.2016.09.001. (https://www.sciencedirect.com/science/article/pii/S235264751630020X) SAVASSI LCM, Hanseníase: políticas públicas e qualidade de vida de pacientes e seus cuidadores. 2010. 196 f. Dissertação (Mestrado em Ciências) – Fundação Oswaldo Cruz, Belo Horizonte, 2010 SCHENK M, KRUTZIK SR, SIELING PA, LEE DJ, TELES RM, OCHOA MT, KOMISOPOULOU E, SARNO EN, REA TH, GRAEBER TG, KIM S, CHENG G, MODLIN RL, NOD2 triggers an interleukin-32-dependent human dendritic cell program in leprosy. Nat Med. 2012 Mar 25;18(4):555-63. http://doi:10.1038/nm.2650. PMID: 22447076; PMCID: PMC3348859. SESAB/DIVEP, Boletim Epidemiológico Hanseníase - Detecção Geral. Nº 01, julho de 2022 (dados/2020). Disponível em: https://www.saude.ba.gov.br/wp-content/uploads/2017/11/boletimHanseniaseDeteccaoGeral_No012022_dados2020.pdf SESAB/DIVEP, Boletim Epidemiológico Hanseníase - Menores de 15 anos. Nº 02, julho de 2022 (dados/2020). Disponível em: https://www.saude.ba.gov.br/wp-content/uploads/2017/11/boletimHanseniaseMenor15-anosNo01_2022_dados2021.pdf SHAN C, CHEN X, CAI H, HAO X, LI J, ZHANG Y, et al., The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021;17(1):134-150. doi:10.7150/ijbs.50773. SHIBUYA M, BERGHEME G, PASSOS S, QUEIROZ I, RÊGO J, CARVALHO LP, MACHADO PRL, Evaluation of monocyte subsets and markers of activation in leprosy reactions. Microbes and Infection, Volume 21, Issue 2, 2019, Pages 94-98. SSN 1286-4579, https://doi.org/10.1016/j.micinf.2018.10.003. SHIN DM, YUK JM, LEE HM, LEE SH, SON JW, HARDING CV, KIM JM, MODLIN RL, JO EK, Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol. 2010 Nov;12(11):1648-65. http://doi:10.1111/j.1462-5822.2010.01497.x. Epub 2010 Jul 20. PMID: 20560977; PMCID: PMC2970753. SILVA BJ, BARBOSA MG, ANDRADE PR, FERREIRA H, NERY JA, CÔRTE-REAL S, SILVA GMda, ROSA PS, FABRI M, SARNO EN, PINHEIRO RO, Autophagy Is an Innate Mechanism Associated with Leprosy Polarization. PLoS Pathog. 2017 Jan 5;13(1):e1006103. http://doi:10.1371/journal.ppat.1006103. PMID: 28056107; PMCID: PMC5215777. SOUSA JRde, FALCÃO LFM, VIRGOLINO GL, CRUZ MFS, TEIXEIRA VF, AARÃO TLde S, FURLANETO IP, CARNEIRO FRO, AMIN G, FUZII HT, QUARESMA JAS, Different cell death mechanisms are involved in leprosy pathogenesis. Microbial Pathogenesis, Volume 166, 2022. 105511, ISSN 0882-4010. https://doi.org/10.1016/j.micpath.2022.105511. SOUZA CS, Hanseníase: formas clínicas e diagnóstico diferencial. Medicina (Ribeirão Preto), [S. l.], v. 30, n. 3, p. 325-334, 1997. DOI:10.11606/issn.2176-7262.v30i3p325-334. Disponível em: https://www.revistas.usp.br/rmrp/article/view/1185. Acesso em: 25 maio. 2023. SOUZA VNBde, IYER AM, LAMMAS DA, NAAFS B, DAS PK, Advances in leprosy immunology and the field application: A gap to bridge. Clinics in Dermatology, Volume 34, Issue 1, 2016. Pages 82-95, ISSN 0738-081X. https://doi.org/10.1016/j.clindermatol.2015.10.013. SIGNOR SA, NUZHDIN SV, The Evolution of Gene Expression in cis and trans. Trends Genet. 2018 Jul;34(7):532-544. doi:10.1016/j.tig.2018.03.007. Epub 2018 Apr 18. PMID: 29680748; PMCID: PMC6094946 SINGH A, ANANG V, VERMA C, SARASWATI S, RANA A, BANDYOPADHYAY U, CHADHA A, NATARAJAN K, BCL2 negatively regulates Protective Immune Responses During Mycobacterial Infection. Biomolecular Concepts. 2021;12(1): 94-109. https://doi.org/10.1515/bmc-2021-0010 SI W, SHEN J, ZHENG H, FAN W, The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenet 11, 25 (2019). https://doi.org/10.1186/s13148-018-0587-8 SUN YM, LIN KY, CHEN YQ, Diverse functions of miR-125 family in different cell contexts. J Hematol Oncol. 2013 15;6:6. doi:10.1186/1756-8722-6-6. TAMGUE O, MEZAJOU CF, NGONGANG NN, KAMENI C, NGUM JA, SIMO USF, TATANG FJ, AKAMI M, NGONO NA, Non-Coding RNAs in the Etiology and Control of Major and Neglected Human Tropical Diseases. Front Immunol. 2021 Oct 19;12:703936. doi:10.3389/fimmu.2021.703936. PMID: 34737736; PMCID: PMC8560798. TENÓRIO MDL, ARAUJO JMS, MELO EVde, CAZZANIGA RA, ARAGÃO AF, VALOIS LQ, SEVERO J, SANTOS-FILHO MAA, MENEZES-SILVA L, MACHADO JA, REED SG, DUTHIE MS, ALMEIDA RPde, BEZERRA-SANTOS M, JESUS ARde, Association between asthma, rhinitis and atopic dermatitis with leprosy: A case-control study. Indian J Dermatol Venereol Leprol. 2023 Feb 2:1-8. doi:10.25259/IJDVL_347_2021. Epub ahead of print. PMID: 37067141. TIJERO B et al., Autonomic involvement in Parkinsonian carriers of PARK2 gene mutations. Parkinsonism Relat Disord. 2015 Jul;21(7):717-22. doi:10.1016/j.parkreldis.2015.04.012. Epub 2015 Apr 23. PMID: 25960264. UDDIN S, MUNIR MZ, GULL S, KHAN AH, KHAN A, KHAN D, KHAN MA, WU Y, SUN Y, LI Y, Transcriptome Profiling Reveals Role of MicroRNAs and Their Targeted Genes during Adventitious Root Formation in Dark-Pretreated Micro-Shoot Cuttings of Tetraploid Robinia pseudoacacia L. Genes 2022, 13, 441. https://doi.org/10.3390/genes13030441 VALENCIA-SANCHEZ MA, LIU J, HANNON GJ, PARKER R, Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006 Mar 1;20(5):515-24. doi:10.1101/gad.1399806. PMID: 16510870. VOGLER M. Targeting BCL2-Proteins for the Treatment of Solid Tumours. Adv Med. 2014;2014:943648. doi:10.1155/2014/943648. Epub 2014 Aug 27. PMID: 26556430; PMCID: PMC4590949. VON MOSTERT HR, The classification of leprosy (an historical survey of the problem with comments on the recent system proposed at Madrid). Cent Afr J Med. 1956 Jun;2(6):225-33. PMID: 13356306. YONEMOTO ACF, CHOPTIAN JÚNIOR MC, MATTARA VAdeO, ABREU MAMMde, Pathophysiology of leprosy: immunological response related to clinical forms. Research, Society and Development, [S. l.], v. 11, n. 9, p. e42211932058, 2022. http://doi10.33448/rsd-v11i9.32058. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32058. Acesso em: 25 may. 2023. WALKER SL, LOCKWOOD DNJ, The clinical and immunological features of leprosy. British Medical Bulletin, Volume 77-78, Issue 1, 2006, Pages 103–121, https://doi.org/10.1093/bmb/ldl010 WANG DD et al., Long noncoding RNA TNFRSF10A-AS1 promotes colorectal cancer through upregulation of HuR. World J Gastroenterol. 2022 May 28;28(20):2184-2200. doi:10.3748/wjg.v28.i20.2184. PMID: 35721888; PMCID: PMC9157619. WANG H, FRELIN L, PEVSNER J, Human syntaxin 7: a Pep12p/Vps6p homologue implicated in vesicle trafficking to lysosomes. Gene, 1997;199(1-2):39-48. doi:10.1016/s0378-1119(97)00343-0. ___. WHO, 2016. Operational Manual 2016 – Global Leprosy Strategy 2016−2020. Accelerating towards a leprosy-free world. Guideline 15 August 2016. ISBN: 978 92 9022 525 6. Disponível em: https://www.who.int/publications/i/item/9789290225256 ___. WHO, 2019. Global leprosy (Hansen disease) update, 2019: time to step-up prevention initiatives. Weekly epidemiological record, 3 September 2020. WHO REFERENCE NUMBER: WER No 36, 2020, 95, 417–440. Disponível em: https://www.who.int/publications/i/item/who-wer9536 ___.WHO, 2020. Lepra/Hanseníase: Gestão das reacções e prevenção das incapacidades. Orientações técnicas. Disponível em: https://www.who.int/pt/publications/i/item/9789290227595 ___. WHO, 2021. Estratégia Global de Hanseníase 2021–2030 – “Rumo à zero hanseníase”. ISBN: 978 92 9022842 4. Disponível em: https://www.who.int/pt/publications/i/item/9789290228509 ___. WHO, 2022. Leprosy - Number of leprosy cases: 2021. Disponível em: https://apps.who.int/neglected_diseases/ntddata/leprosy/leprosy.html WILLIAMS AE, PERRY MM, MOSCHOS SA, LARNER-SVENSSON HM, LINDSAY MA, Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans 2008;36(6):1211-5. doi:10.1042/BST0361211. WU J, ZHANG H, YANG L, CHEN Y, LI J, YANG M, ZHANG X, HE C, WANG X, XU X, Syntaxin 7 modulates seizure activity in epilepsy. Neurobiology of Disease, Volume 181, 2023, 106118, ISSN 0969-9961, https://doi.org/10.1016/j.nbd.2023.106118. ZHANG R, HUANG M, CAO Z, QI J, QIU Z, CHIANG LY, MeCP2 plays an analgesic role in pain transmission through regulating CREB / miR-132 pathway. Mol Pain 2015;(12)11-19. doi:10.1186/s12990-015-0015-4. ZHAO JL, RAO DS, BOLDIN MP, TAGANOV KD, O'CONNELL RM, BALTIMORE D, NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA 2011;108(22):9184-9. doi:10.1073/pnas.1105398108.; https://repositorio.ufba.br/handle/ri/38139

  14. 14
  15. 15
  16. 16

    File Description: application/pdf

  17. 17
  18. 18
  19. 19
  20. 20