Εμφανίζονται 1 - 20 Αποτελέσματα από 148 για την αναζήτηση '"Agriculture -- Data processing."', χρόνος αναζήτησης: 0,66δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel·ligents

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sciencedirect.com/science/article/pii/S0168169923000121; info:eu-repo/grantAgreement/EC/H2020/101016906/EU/A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems/CANOPIES; http://hdl.handle.net/2117/408683

  3. 3
    Academic Journal

    Συνεισφορές: Ecitrónica

    Περιγραφή αρχείου: 6 páginas; application/pdf

    Relation: zfv 2/2019. 144. Jg.; 77; 72; N/A; ZFV; Aasen, H., Honkavaara, E., Lucieer, A., Zarco-Tejada, P. J. (2018): Quantitative remote sensing at ultra-high resolution with uav spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sensing, 10 (7), 2018. ISSN 2072-4292. DOI:10.3390/rs10071091. www.mdpi.com/2072- 4292/10/7/1091.; Albertz, J. (2001): Einführung in die Fernerkundung: Grundlagen der Interpretation von Luft- und Satellitenbildern. Wiss. Buchges. ISBN 9783534146246. https://books.google.de/books?id=KdFAAAACAAJ.; European Commission (2018): La investigación y la innovación agraria. http://ec.europa.eu/agriculture/research-innovation/index_es.htm.; Halfacree, G. (2017): Nvidia Jetson TK1 – Full Board. https://www.flickr. com/photos/120586634@N05/14672953894.; Harris, M. (2017): An even easier introduction to CUDA. https:// devblogs.nvidia.com/even-easier-introduction-cuda.; NVDIA Corporation (2018): CUDA zone, 2018. https://developer.nvidia. com/cuda-zone; NVIDIA Corporation (2018): Embedded system – build something amazing. https://www.nvidia.com/en-us/autonomous-machines/ embedded-systems.; OpenCV (2018): OpenCV – About. https://opencv.org/about.html. Parrot Sequoia Team (2018): Parrot Sequoia+. www.parrot.com/ business-solutions-us/parrot-professional/parrot-sequoia#parrotsequoia-.; Pix4D Team (2018): Pix4d. https://pix4d.com/sequoia-faq.; Sanders, J., Kandrot, E. (2015): CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional, 6th edition, 2015. ISBN 0131387685, 9780131387683.; Storti, D., Yurtoglu, M. (2015): CUDA for Engineers: An Introduction to High-Performance Parallel Computing. Addison-Wesley Professional, 6th edition, 2015. ISBN 013417741X, 9780134177410.; Taipale, E. (2017): NDVI and your farm: understanding NDVI for plant health insights. https://sentera.com/understanding-ndvi-planthealth.; Weier, J., Herring, D. (2018): Measuring Vegetation (NDVI & EVI). https://earthobservatory.nasa.gov/Features/MeasuringVegetation.; https://repositorio.escuelaing.edu.co/handle/001/1429

  4. 4
    Periodical

    Συγγραφείς: Lee, Anne

    Πηγή: New Zealand dairy exporter (1988), Aug 2022; v.97 n.12:p.28-29
    Dairy exporter

  5. 5
    Academic Journal

    Συγγραφείς: Bermejo Sánchez, Sergi

    Συνεισφορές: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica

    Πηγή: UPCommons. Portal del coneixement obert de la UPC
    Universitat Politècnica de Catalunya (UPC)
    Recercat. Dipósit de la Recerca de Catalunya
    instname

    Περιγραφή αρχείου: application/pdf

    Συνδεδεμένο Πλήρες Κείμενο
  6. 6
    Dissertation/ Thesis

    Συγγραφείς: Díaz Barón, Eva

    Συνεισφορές: Caballero Flores, David, García Ruiz, Francisco José, Universitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica, Universitat Politècnica de Catalunya. Centre de Cooperació per al Desenvolupament, CDEI-DM - Centre de Disseny d'Equips Industrials-Dinàmica de Màquines

    Πηγή: UPCommons. Portal del coneixement obert de la UPC
    Universitat Politècnica de Catalunya (UPC)

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: https://hdl.handle.net/2117/406032

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Dissertation/ Thesis

    Συγγραφείς: Villota Cáceres, Juan Sebastián

    Συνεισφορές: Chaparro Preciado, Javier Alberto, Estupiñan Escalante, Enrique, Apolo Apolo, Orly Enrique, Cano Tirado, David Alexánder

    Περιγραφή αρχείου: 148 páginas; application/pdf

    Relation: FAO. (2024). Major Tropical Fruits Market Review: Preliminary Results 2024 (inf. téc.) (Ac- cessed on 28 january 2025). Food y Agriculture Organization of the United Nations. Rome. https://openknowledge.fao.org/handle/20.500.14283/cd3818en; USDA. (2007). United States Standards for Grades of Mangos (inf. téc.) (Accessed on 28 january 2024). United States Department of Agriculture. https://www.ams.usda.gov/grades- standards/mango-grades-and-standards; Barman, U., Choudhury, R., Sahu, D., & Barman, G. (2020). Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease. Computers and Electronics in Agriculture, 177, 105661. https://doi.org/https://doi.org/ 10.1016/j.compag.2020.105661; Frutícola, P. (2024). Colombia: exportación de mango azúcar a EE.UU. con proyección de crecimiento [Accessed on 13 march 2024]. https://www.portalfruticola.com/noticias/ 2024/03/13/colombia-exportacion-de-mango-azucar-a-ee-uu-con-proyeccion-de- crecimiento/; Ghazal, S., Qureshi, W. S., Khan, U. S., Iqbal, J., Rashid, N., & Tiwana, M. I. (2021). Analysis of visual features and classifiers for Fruit classification problem. Computers and Electronics in Agriculture, 187, 106267. https://doi.org/https://doi.org/10.1016/j.compag.2021. 106267; UNECE. (2023). UNECE Standard FFV-45 concerning the marketing and commercial quality control of Mangoes (inf. téc.) (Accessed on 28 january 2024). United Nations Economic Commission for Europe. https://unece.org/trade/wp7/FFV-Standards; Díaz Gómez, A., et al. (2024). Sistema de detección de distancia en tiempo real mediante dashcams [B.S. thesis] [Accessed on 7 february 2025]. https://rodin.uca.es/handle/ 10498/33602; Ramírez Alberto, L. (2021). Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina. https://repositorio.unal. edu.co/handle/unal/80092; Zawbaa, H. M., Hazman, M., Abbass, M., & Hassanien, A. E. (2014). Automatic fruit classifica- tion using random forest algorithm. 2014 International Conference on Hybrid Intelligent Systems (HIS), 164-168. https://doi.org/https://doi.org/10.1109/HIS.2014.7086191; Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. International Conference on Machine Learning. https://doi.org/https://doi. org/10.48550/arXiv.1905.11946; Padda, M. S., do Amarante, C. V. T., Garcia, R. M., Slaughter, D. C., & Mitcham, E. J. (2011). Methods to analyze physico-chemical changes during mango ripening: A mul- tivariate approach. Scientia Horticulturae, 128(2), 108-118. https://doi.org/10.1016/j. postharvbio.2011.06.002; González-Fernández, J., & Hormaza, J. (2020). Plagas y enfermedades del mango (Mangifera indica L.) [Accessed on 20 December 2024]. CSIC-IHSM La Mayora. https://www. mango.org/wp-content/uploads/2020/08/Mango_Plagas_y_Enfermedades_SPN.pdf; Montenegro Bermudez, A. F. (2021). Detección y clasificación de antracnosis en mango usando imágenes hiperespectrales y técnicas de aprendizaje profundo [Accessed on 20 Decem- ber 2024]. https://repositorio.unal.edu.co/handle/unal/81735; Pereira, L. F. S., Barbon Jr, S., Valous, N. A., & Barbin, D. F. (2018). Predicting the ripening of papaya fruit with digital imaging and random forests. Computers and Electronics in Agriculture, 145, 76-82. https://doi.org/https://doi.org/10.1016/j.compag.2017.12.029; Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861. https://doi.org/https: //doi.org/10.48550/arXiv.1704.04861; Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57(99), 1-43. https://doi.org/https://doi.org/10.1007/s10462-024-10721-6; ONNX Community. (2024). ONNX: Open Neural Network Exchange [Accessed on 30 january 2025].; Núñez Bueno, L. (1996). Las moscas de las frutas en Colombia e incidencia en la fruticultura colombiana [Accessed on 15 November 2023]. Revista Colombiana de Entomología. https://repository.agrosavia.co/handle/20.500.12324/20433; ICA. (2022). Con un embarque de 20 toneladas, Colombia inició la exportación de mango fresco a Estados Unidos [Accessed on 20 December 2024]. https://www.ica.gov.co/noticias/ica- embarque-20toneladas-mango; Ploetz, R. C. (2003). Diseases of tropical fruit crops. CABI. https : / / doi . org / 10 . 1079 / 9780851993904.0000; You, J., Li, X., Low, M., Lobell, D., & Ermon, S. (2017). Deep gaussian process for crop yield prediction based on remote sensing data. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). https://doi.org/https://doi.org/10.1609/aaai.v31i1.11172; Suharjito, Elwirehardja, G. N., & Prayoga, J. S. (2021). Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches. Computers and Elec- tronics in Agriculture, 188, 106359. https://doi.org/https://doi.org/10.1016/j.compag. 2021.106359; https://repositorio.escuelaing.edu.co/handle/001/3579; Universidad Escuela Colombiana de Ingeniería; Repositorio Digital; https://repositorio.escuelaing.edu.co/

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20