-
1Conference
Contributors: Microsoft Research - Inria Joint Centre (MSR - INRIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation Redmond, Wash., Microsoft Research Cambridge (Microsoft), Microsoft Research, Types, Logic and computing (TYPICAL), Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Mathematical, Reasoning and Software (MARELLE), Centre Inria d'Université Côte d'Azur, Tobias Nipkow and Christian Urban
Source: Theorem Proving in Higher Order Logics ; https://inria.hal.science/inria-00368403 ; Theorem Proving in Higher Order Logics, 2009, Munich, Germany
Subject Terms: Formalization of Algebra, Coercive subtyping, Type inference, Coq, SSReflect, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.0: General, [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO], [MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]
-
2Conference
Contributors: Microsoft Research - Inria Joint Centre (MSR - INRIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation Redmond, Wash., Microsoft Research Cambridge (Microsoft), Microsoft Research, Types, Logic and computing (TYPICAL), Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Mathematical, Reasoning and Software (MARELLE), Centre Inria d'Université Côte d'Azur, Tobias Nipkow and Christian Urban
Source: Theorem Proving in Higher Order Logics ; https://inria.hal.science/inria-00368403 ; Theorem Proving in Higher Order Logics, 2009, Munich, Germany
Subject Terms: Formalization of Algebra, Coercive subtyping, Type inference, Coq, SSReflect, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.0: General, [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO], [MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]
-
3Conference
Contributors: Microsoft Research - Inria Joint Centre (MSR - INRIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation Redmond, Wash., Microsoft Research Cambridge (Microsoft), Microsoft Research, Types, Logic and computing (TYPICAL), Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Mathematical, Reasoning and Software (MARELLE), Inria Sophia Antipolis - Méditerranée (CRISAM), Tobias Nipkow and Christian Urban
Source: Theorem Proving in Higher Order Logics ; https://hal.inria.fr/inria-00368403 ; Theorem Proving in Higher Order Logics, 2009, Munich, Germany
Subject Terms: Formalization of Algebra, Coercive subtyping, Type inference, Coq, SSReflect, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.0: General, [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO], [MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]
Relation: inria-00368403; https://hal.inria.fr/inria-00368403; https://hal.inria.fr/inria-00368403v2/document; https://hal.inria.fr/inria-00368403v2/file/main.pdf