Εμφανίζονται 1 - 20 Αποτελέσματα από 87 για την αναζήτηση '"5-аминолевулиновая кислота."', χρόνος αναζήτησης: 0,96δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Biomedical Photonics; Том 14, № 2 (2025); 31-39 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/720/488; McLaughlin-Drubin M. E., Munger K. Viruses associated with human cancer // Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. – 2008. – Vol. 1782. – P. 127-150.; Plummer M., de Martel C., Vignat J., Ferlay J., Bray F., Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis // The Lancet Global Health. – 2016. – Vol. 9. – P. e609-e616.; Kotsopoulos J., Lubinski J., Gronwald J. Updates to the National Cancer Institute’s PDQ Information from Recently Published Oncology Research. – 2017. – Vol. 9. – P. 303.; Asiaf A., Ahmad S. T., Mohammad S. O., Zargar M. A. Review of the current knowledge on the epidemiology, pathogenesis, and prevention of human papillomavirus infection // European Journal of Cancer Prevention. – 2014. – Vol. 3. – P. 206-224.; McCredie M. R., Sharples K. J., Paul C., Baranyai J., Medley G., Jones R. W., Skegg D. C. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study // The lancet oncology. – 2008. – Vol. 5. – P. 425-434.; Munk A. C., Gudlaugsson E., Ovestad I. T., Lovslett K., Fiane B., van Diermen Hidle B., Kruse A.-J., Skaland I., Janssen E. A., Baak J. P. Interaction of epithelial biomarkers, local immune response and condom use in cervical intraepithelial neoplasia 2–3 regression // Gynecologic oncology. – 2012. – Vol. 3. ¬– P. 489-494.; Segura S. E., Ramos-Rivera G., Hakima L., Suhrland M., Khader S. Low- grade squamous intraepithelial lesion, cannot rule out high-grade lesion: Diagnosis, histological outcomes and human papillomavirus results // Cytopathology. – 2019. – Vol. 1. – P. 99-104.; Ferlay J., Colombet M., Soerjomataram I., Siegel R., Torre L., Jemal A. Global and regional estimates of the incidence and mortality for 38 cancers: GLOBOCAN 2018. Lyon: International Agency for Research on Cancer // World Health Organization. – 2018. – Vol. 394. – P. 424.; Nene B. M., Hiremath P. S., Kane S., Fayette J.-M., Shastri S. S., Sankaranarayanan R. Effectiveness, safety, and acceptability of cryotherapy by midwives for cervical intraepithelial neoplasia in Maharashtra, India // International Journal of Gynecology & Obstetrics. – 2008. – Vol. 3. – P. 232-236.; Rema P., Suchetha S., Thara S., Fayette J. M., Wesley R., Sankaranarayanan R. Effectiveness and safety of loop electrosurgical excision procedure in a low-resource setting // International Journal of Gynecology & Obstetrics. – 2008. – Vol. 2. – P. 105-110.; Shanazarov N. A., Zinchenko S. V., Kisikova S. D., Rizvanov A. A., Smailova S., Petukhov K. A., Salmaganbetova Z. Z. Photodynamic Therapy In The Treatment Of Hpv-Associated Cervical Cancer: Mechanisms, Challenges And Future Prospects // Biomedical Photonics. – 2024. – Vol. 13. ¬– P. 47-55.; Tzerkovsky D. A., Dunaevskaya V. V. Laser technologies in treatment of cervical intraepytelial neoplasia (review) // Biomedical Photonics. – 2020. – Vol 3. – P. 30-39.; Szpringer E., Lutnicki K., Marciniak A. Photodynamic therapy-- mechanism and employment // Annales Universitatis Mariae Curie- Sklodowska. Sectio D: Medicina. – 2004. – Vol. 59. – P. 498-502.; Trushina O. I., Filonenko E. V., Novikova E. G., Mukhtarulina S. V. Photodynamic therapy in the prevention of hpv-induced recurrences of precancer and initial cancer of the cervix // Biomedical Photonics. – 2024. – Vol. 13. – P. 42-46.; Dobson J., de Queiroz G. F., Golding J. P. Photodynamic therapy and diagnosis: Principles and comparative aspects // The Veterinary Journal. – 2018. – Vol. 233. – P. 8-18.; Kou J., Dou D., Yang L. Porphyrin photosensitizers in photodynamic therapy and its applications // Oncotarget. – 2017. – Vol 46. – P. 81591.; Stylli S. S., Howes M., MacGregor L., Rajendra P., Kaye A. H. Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome // Journal of Clinical Neuroscience. – 2004. – Vol. 6. – P. 584-596.; Yoshida T., Saeki T., Ohashi S., Okudaira T., Lee M., Yoshida H., Maruoka H., Ito H., Funasaka S., Kato H. Clinical study of photodynamic therapy for laryngeal cancer // Nippon Jibiinkoka Gakkai Kaiho. – 1995. – Vol. 5. – P. 795-804,927.; Koizumi N., Harada Y., Minamikawa T., Tanaka H., Otsuji E., Takamatsu T. Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid // World Journal of Gastroenterology. – 2016. – Vol. 3. – P. 1289.; Harada Y., Murayama Y., Takamatsu T., Otsuji E., Tanaka H. 5-aminolevulinic acid-induced protoporphyrin IX fluorescence imaging for tumor detection: Recent advances and challenges // International journal of molecular sciences. – 2022. – Vol. 12. – P. 6478.; Zavedeeva V. E., Efendiev K. T., Kustov D. M., Loschenova L. Y., Loschenov V. B. Dual-Wavelength Fluorescence Study Of In Vivo Accumulation And Formation Of 5-Ala-Induced Porphyrins // Biomedical Photonics. – 2025. – Vol. 1. – P. 36-46.; Ivanova-Radkevich V. I., Kuznetsova O. M., Filonenko E. V. The Role Of Membrane Transport Proteins In 5-Alk-Induced Accumulation Of Protoporphyrin Ix In Tumor Cells // Biomedical Photonics. – 2024. – Vol. 2. – P. 43-48.; Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S. W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: classification, preparation, and applications // Nanoscale Research Letters. – 2013. – Vol. 1. – P. 102.; Rkein A. M., Ozog D. M. Photodynamic Therapy // Dermatologic Clinics. – 2014. – Vol. 3. – P. 415-425.; Hillemanns P., Soergel P., Löning M. Fluorescence diagnosis and photodynamic therapy for lower genital tract diseases – A review // Medical Laser Application. – 2009. – Vol. 24. – P. 10-17.; Hillemanns P., Weingandt H., Baumgartner R., Diebold J., Xiang W., Stepp H. Photodetection of cervical intraepithelial neoplasia using 5-aminolevulinic acid–induced porphyrin fluorescence // Cancer. – 2000. – Vol. 10. – P. 2275-2282.; Chen Y., Xu Y., Zhang Z., Xiong Z., Wu D. 5-aminolevulinic acid- mediated photodynamic therapy effectively ameliorates HPV- infected cervical intraepithelial neoplasia // American Journal of Translational Research. – 2022. – Vol. 4. – P. 2443.; Poreba E., Broniarczyk J. K., Gozdzicka-Jozefiak A. Epigenetic mechanisms in virus-induced tumorigenesis // Clinical epigenetics. – 2011. – Vol. 2. – P. 233-247.; Fu Y., Bao Y., Hui Y., Gao X., Yang M., Chang J. Topical photodynamic therapy with 5-aminolevulinic acid for cervical high-risk HPV infection // Photodiagnosis and photodynamic therapy. – 2016. – Vol. 13. – P. 29-33.; Bodner K., Bodner-Adler B., Wierrani F., Kubin A., Szölts-Szölts J., Spängler B., Grünberger W. Cold-knife conization versus photodynamic therapy with topical 5-aminolevulinic acid (5- ALA) in cervical intraepithelial neoplasia (CIN) II with associated human papillomavirus infection: a comparison of preliminary results // Anticancer Res. – 2003. – Vol. 2c. – P. 1785-8.; Keefe K. A., Tadir Y., Tromberg B., Berns M., Osann K., Hashad R., Monk B. J. Photodynamic therapy of high-grade cervical intraepithelial neoplasia with 5-aminolevulinic acid // Lasers Surg Med. – 2002. – Vol. 4. – P. 289-93.; Barnett A. A., Haller J. C., Cairnduff F., Lane G., Brown S. B., Roberts D. J. H. A randomised, double-blind, placebo-controlled trial of photodynamic therapy using 5-aminolaevulinic acid for the treatment of cervical intraepithelial neoplasia // International Journal of Cancer. – 2003. – Vol. 6. – P. 829-832.; Inoue K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer // International Journal of Urology. – 2017. – Vol. 2. – P. 97-101.; Choi M. C., Jung S. G., Park H., Lee S. Y., Lee C., Hwang Y. Y., Kim S. J. Photodynamic therapy for management of cervical intraepithelial neoplasia II and III in young patients and obstetric outcomes // Lasers in Surgery and Medicine. – 2013. – Vol. 9. – P. 564-572.; Bellnier D. A., Greco W. R., Loewen G. M., Nava H., Oseroff A. R., Pandey R. K., Tsuchida T., Dougherty T. J. Population pharmacokinetics of the photodynamic therapy agent 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a in cancer patients // Cancer research. – 2003. – Vol. 8. – P. 1806-1813.; Istomin Y. P., Lapzevich T. P., Chalau V. N., Shliakhtsin S. V., Trukhachova T. V. Photodynamic therapy of cervical intraepithelial neoplasia grades II and III with Photolon® // Photodiagnosis and Photodynamic Therapy. – 2010. – Vol. 3. – P. 144-151.; Gu L., Cheng M., Hong Z., Di W., Qiu L. The effect of local photodynamic therapy with 5-aminolevulinic acid for the treatment of cervical low-grade squamous intraepithelial lesions with high-risk HPV infection: A retrospective study // Photodiagnosis and Photodynamic Therapy. – 2021. – Vol. 33. – P. 102172.; Li D., Zhang F., Shi L., Lin L., Cai Q., Xu Y. Treatment of HPV Infection- Associated Low Grade Cervical Intraepithelial Neoplasia with 5-Aminolevulinic Acid-Mediated Photodynamic Therapy // Photodiagnosis and Photodynamic Therapy. – 2020. – Vol. 32. – P. 101974.; Quint K. D., de Koning M. N. C., Quint W. G. V., Pirog E. C. Progression of cervical low grade squamous intraepithelial lesions: in search of prognostic biomarkers // European Journal of Obstetrics & Gynecology and Reproductive Biology. – 2013. – Vol. 2. – P. 501-506.; Ma L., Gao X., Geng L., You K., Wu Z., Li Y., Han Q., Wang Y., Guo H. Efficacy and safety of photodynamic therapy mediated by 5-aminolevulinic acid for the treatment of cervical intraepithelial neoplasia 2: a single-center, prospective, cohort study // Photodiagnosis and photodynamic therapy. – 2021. – Vol. 36. – P. 102472.; Inada N. M., Buzzá H. H., Leite M. F. M., Kurachi C., Trujillo J. R., de Castro C. A., Carbinatto F. M., Lombardi W., Bagnato V. S. Long term effectiveness of photodynamic therapy for CIN treatment // Pharmaceuticals. – 2019. – Vol. 3. – P. 107.; Mizuno M., Mitsui H., Kajiyama H., Teshigawara T., Inoue K., Takahashi K., Ishii T., Ishizuka M., Nakajima M., Kikkawa F. Efficacy of 5-aminolevulinic acid and LED photodynamic therapy in cervical intraepithelial neoplasia: A clinical trial // Photodiagnosis and photodynamic therapy. – 2020. – Vol. 32. – P. 102004.; Keefe K. A., Tadir Y., Tromberg B., Berns M., Osann K., Hashad R., Monk B. J. Photodynamic therapy of high-grade cervical intraepithelial neoplasia with 5-aminolevulinic acid // Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. – 2002. – Vol. 4. – P. 289-293.; Soergel P., Wang X., Stepp H., Hertel H., Hillemanns P. Photodynamic therapy of cervical intraepithelial neoplasia with hexaminolevulinate // Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. – 2008. – Vol. 9. – P. 611-615.; Hwang L. Y., Ma Y., Shiboski S. C., Farhat S., Jonte J., Moscicki A.- B. Active Squamous Metaplasia of the Cervical Epithelium Is Associated With Subsequent Acquisition of Human Papillomavirus 16 Infection Among Healthy Young Women // The Journal of Infectious Diseases. – 2012. – Vol. 4. – P. 504-511.; Arbyn M., Redman C. W. E., Verdoodt F., Kyrgiou M., Tzafetas M., Ghaem-Maghami S., Petry K.-U., Leeson S., Bergeron C., Nieminen P., Gondry J., Reich O., Moss E. L. Incomplete excision of cervical precancer as a predictor of treatment failure: a systematic review and meta-analysis // The Lancet Oncology. – 2017. – Vol. 12. – P. 1665-1679.; Sen P., Ganguly P., Ganguly N. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer // Oncology letters. – 2018. – Vol. 15. – P. 11-22.; Jacquin E., Baraquin A., Ramanah R., Carcopino X., Morel A., Valmary- Degano S., Bravo I. G., De Sanjosé S., Riethmuller D., Mougin C. Methylation of human papillomavirus type 16 CpG sites at E2-binding site 1 (E2BS1), E2BS2, and the Sp1-binding site in cervical cancer samples as determined by high-resolution melting analysis–PCR // Journal of clinical microbiology. – 2013. – Vol. 10. – P. 3207-3215.; Chang C.-L., Ho S.-C., Su Y.-F., Juan Y.-C., Huang C.-Y., Chao A.-S., Hsu Z.-S., Chang C.-F., Fwu C.-W., Chang T.-C. DNA methylation marker for the triage of hrHPV positive women in cervical cancer screening: real-world evidence in Taiwan // Gynecologic oncology. – 2021. – Vol. 2. – P. 429-435.; Kim M.-K., Lee I.-H., Lee K.-H., Lee Y. K., So K. A., Hong S. R., Hwang C.-S., Kee M.-K., Rhee J. E., Kang C. DNA methylation in human papillomavirus-infected cervical cells is elevated in high- grade squamous intraepithelial lesions and cancer // Journal of gynecologic oncology. – 2016. – Vol. 2. – P. 24-27.; Tang Y., Su Y., Xu Y., Zhang Y., Shen Y., Qin L., Zhang L., Cao L., Zhou Y., Zhang T. Therapeutic effects of topical photodynamic therapy with 5-aminolevulinic acid on cervical high-grade squamous intraepithelial lesions // Photodiagnosis and Photodynamic Therapy. – 2022. – Vol. 39. – P. 102884.; Zhang W., Zhang A., Sun W., Yue Y., Li H. Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia and human papilloma virus infection: A systematic review and meta- analysis of randomized clinical trials // Medicine. – 2018. – Vol. 21. – P. e10864.; Wang X., You L., Zhang W., Ma Y., Tang Y., Xu W. Evaluation of 5-aminolevulinic acid-mediated photodynamic therapy on cervical low-grade squamous intraepithelial lesions with high-risk HPV infection // Photodiagnosis and Photodynamic Therapy. – 2022. – Vol. 38. – P. 102807.; Ran R., Wang M., Li X., Liu Q. A prospective study of photodynamic therapy for cervical squamous intraepithelial lesion // Photodiagnosis and Photodynamic therapy. – 2021. – Vol. 34. – P. 102185.; Kim Y.-T., Lee J. M., Hur S.-Y., Cho C.-H., Kim Y. T., Kim S. C., Kang S. B. Clearance of human papillomavirus infection after successful conization in patients with cervical intraepithelial neoplasia // International Journal of Cancer. – 2010. – Vol. 8. – P. 1903-1909.; Kim H. S., Kwon J. E., Kim J. H., Kim A., Lee N. R., Kim M., Lee M., Suh D. H., Kim Y. B. Efficacy of loop electrosurgical excision procedure with cold coagulation for treating cervical intraepithelial neoplasia: A two center cohort study // Obstet Gynecol Sci. – 2017. – Vol. 2. – P. 200-206.; Qu Z., Wang Z., Qiu S., Cui G., Li C. Efficacy of photodynamic therapy with 5-aminolevulinic acid for the treatment of cervical high-grade squamous intraepithelial lesions with high-risk HPV infection: A retrospective study // Photodiagnosis and Photodynamic Therapy. – 2022. – Vol. 40. – P. 103068.; Pretorius R. G., Belinson J. L., Peterson P., Azizi F., Lo A. Yield and mode of diagnosis of cervical intraepithelial neoplasia 3 or cancer among women with negative cervical cytology and positive high- risk human papillomavirus test results // Journal of lower genital tract disease. – 2013. – Vol. 4. – P. 430-439.; Zhang W., Zhang A., Sun W., Yue Y., Li H. Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia and human papilloma virus infection: A systematic review and meta- analysis of randomized clinical trials // Medicine. – 2018. – Vol. 21. – P. 47-54.; Maździarz A. Successful pregnancy and delivery following selective use of photodynamic therapy in treatment of cervix and vulvar diseases // Photodiagnosis and photodynamic therapy. – 2019. – Vol. 28. – P. 65-68.; Hillemanns P., Garcia F., Petry K. U., Dvorak V., Sadovsky O., Iversen O.-E., Einstein M. H. A randomized study of hexaminolevulinate photodynamic therapy in patients with cervical intraepithelial neoplasia 1/2 // American journal of obstetrics and gynecology. – 2015. – Vol. 4. – P. 465. e1-465. e7.; Waitzman N. J., Jalali A., Grosse S. D. Preterm birth lifetime costs in the United States in 2016: An update // seminars in Perinatology. – 2021. – Vol. 45. – P. 151390.

  3. 3
    Academic Journal

    Πηγή: Biomedical Photonics; Том 14, № 3 (2025); 43-51 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/731/503; Basset-Seguin N., Herms F. Update on the management of basal cell carcinoma. Acta dermato-venereologica, 2020, Vol. 100 (11), рр. 5750.; Самуленко А., Мордовский А., Поляков А. Современная стратегия лечения базальноклеточного рака кожи головы и шеи // Врач. – 2017. – №. 12. – С. 5-8.; Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Состояние онкологической помощи населению России в 2024 году. − Москва: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. − 2025. – С. 275.; Peris K. et al. European consensus-based interdisciplinary guideline for diagnosis and treatment of basal cell carcinoma – update 2023. European Journal of Cancer, 2023, Vol. 192, рр. 113254.; Krynitz B. et al. Risk of basal cell carcinoma in Swedish organ transplant recipients: a population-based study. British Journal of Dermatology, 2016, Vol. 174(1), рр. 95-103.; Клинические рекомендации – Базальноклеточный рак кожи – 2020-2021-2022 (20.01.2023) – Утверждены Минздравом РФ.; Reiter O. et al. The diagnostic accuracy of dermoscopy for basal cell carcinoma: A systematic review and meta-analysis. Journal of the American Academy of Dermatology, 2019, Vol. 80(5), рр. 1380-1388.; Филоненко Е.В., Григорьевых Н.И. Фотодинамическая терапия больной базальноклеточным раком кожи нижнего века (клиническое наблюдение) // Biomedical Photonics. – 2023. – Т. 12, № 4. – С. 30-32. doi:10.24931/2413–9432–2023–12-4-30–32.; Peris K. et al. Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines. European Journal of cancer, 2019, Vol. 118, рр. 10-34.; McCusker M. et al. Metastatic basal cell carcinoma: prognosis dependent on anatomic site and spread of disease. European journal of cancer, 2014, Vol. 50(4), рр. 774-783.; Morton C. et al. European Dermatology Forum Guidelines on topical photodynamic therap. European Journal of Dermatology, 2015, Vol. 25(4), рр. 296-311.; Schulten R. et al. Comparison of the uptake of 5-aminolevulinic acid and its methyl ester in keratinocytes and skin. Naunyn-Schmiedeberg's archives of pharmacology, 2012, Vol. 385(10), рр. 969-979.; Van Loo E. et al. Surgical excision versus Mohs’ micrographic surgery for basal cell carcinoma of the face: a randomised clinical trial with 10 year follow-up. European Journal of Cancer, 2014, Vol. 50(17), рр. 3011-3020.; Zeitouni N. C. et al. 5-aminolevulinic acid photodynamic therapy for the treatment of basal and squamous cell carcinoma: A systematic review. Photodiagnosis and Photodynamic Therapy, 2025, рр. 104649.; Williams H. C. et al. Surgery versus 5% imiquimod for nodular and superficial basal cell carcinoma: 5-year results of the SINS randomized controlled trial. Journal of Investigative Dermatology, 2017, Vol. 137(3), рр. 614-619.; Wang J. Y. et al. Photodynamic Therapy: Clinical Applications in Dermatology. Journal of the American Academy of Dermatology, 2025.; Calzavara-Pinton P.G. et al. Methylaminolaevulinate-based photodynamic therapy of Bowen’s disease and squamous cell carcinoma. British Journal of Dermatology, 2008, Vol. 159(1), рр. 137-144.; Keyal U. et al. Present and future perspectives of photodynamic therapy for cutaneous squamous cell carcinoma. Journal of the American Academy of Dermatology, 2019, Vol. 80(3), рр. 765-773.; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy of cutaneous squamous cell carcinoma. Biomedical Photonics, 2024, Vol. 13(4), рр. 33-39. doi:10.24931/2413-9432-2024-13-4-33-39; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy of Bowen’s disease. Biomedical Photonics, 2023, Vol. 12(4), рр. 22-29. doi:10.24931/2413-9432-2023-12-4-22-29; Kessels J.P.H.M. et al. Treatment of superficial basal cell carcinoma by topical photodynamic therapy with fractionated 5-aminolaevulinic acid 20% vs. two-stage topical methyl aminolaevulinate: results of a randomized controlled trial. British Journal of Dermatology, 2018, Vol. 178(5), рр. 1056-1063.; Van Delft L.C.J. et al. Long-term efficacy of photodynamic therapy with fractionated 5-aminolevulinic acid 20% versus conventional two-stage topical methyl aminolevulinate for superficial basal-cell carcinoma. Dermatology, 2022, Vol. 238(6), рр. 1044-1049.; Salmivuori M. et al. Hexyl aminolevulinate, 5-aminolevulinic acid nanoemulsion and methyl aminolevulinate in photodynamic therapy of non-aggressive basal cell carcinomas: A non-sponsored, randomized, prospective and double-blinded trial. Journal of the European Academy of Dermatology and Venereology, 2020, Vol. 34(12), рр. 2781-2788; Arits A.H.M.M. et al. Photodynamic therapy versus topical imiquimod versus topical fluorouracil for treatment of superficial basal-cell carcinoma: a single blind, non-inferiority, randomised controlled trial. The lancet oncology, 2013, Vol. 14(7), рр. 647-654.; Roozeboom M. H. et al. Three-year follow-up results of photodynamic therapy vs. imiquimod vs. fluorouracil for treatment of superficial basal cell carcinoma: a single-blind, noninferiority, randomized controlled trial. Journal of Investigative Dermatology, 2016, Vol. 136(8), рр. 1568-1574.; Jansen M.H.E. et al. Five-year results of a randomized controlled trial comparing effectiveness of photodynamic therapy, topical imiquimod, and topical 5-fluorouracil in patients with superficial basal cell carcinoma. Journal of Investigative Dermatology, 2018, – Vol. 138(3), рр.527-533.; Morton C.A. et al. A randomized, multinational, noninferiority, phase III trial to evaluate the safety and efficacy of BF-200 aminolaevulinic acid gel vs. methyl aminolaevulinate cream in the treatment of nonaggressive basal cell carcinoma with photodynamic therapy. British Journal of Dermatology, 2018, Vol. 179(2), рр. 309-319.; Церковский Д. А. и др. Фотодинамическая терапия базально-клеточного рака кожи с фотосенсибилизатором фотолон // Biomedical Photonics. – 2017. – Т. 6, №. 1. – С. 12-19; Mosterd K. et al. Fractionated 5-aminolaevulinic acid–photodynamic therapy vs. surgical excision in the treatment of nodular basal cell carcinoma: results of a randomized controlled trial. British Journal of Dermatology, 2008, Vol. 159(4), рр. 864-870.; Roozeboom M.H. et al. Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up. Journal of the American Academy of Dermatology, 2013, Vol. 69(2). – Р. 280-287; Капинус В.Н. и др. Возможности фотодинамической терапии при лечении рецидивов базально-клеточного рака кожи // Онкология. Журнал им. ПА Герцена. – 2013. – Т. 1, №. 4. – С. 40-44.; de Haas E.R.M. et al. Fractionated illumination significantly improves the response of superficial basal cell carcinoma to aminolevulinic acid photodynamic therapy. Journal of investigative dermatology, 2006, Vol. 126(12), рр. 2679-2686; De Vijlder H.C. et al. Light fractionation significantly improves the response of superficial basal cell carcinoma to aminolaevulinic acid photodynamic therapy: five-year follow-up of a randomized, prospective trial. Acta dermato-venereologica, 2012, Vol. 92(6), рр. 641-647.; Foley P. et al. Photodynamic therapy with methyl aminolevulinate for primary nodular basal cell carcinoma: results of two randomized studies. International journal of dermatology, 2009, Vol. 48(11), рр. 1236-1245.; Basset-Seguin N. et al. Topical methyl aminolaevulinate photodynamic therapy versus cryotherapy for superficial basal cell carcinoma: a 5 year randomized trial. European Journal of dermatology, 2008, Vol. 18(5), рр. 547-553.; Šmucler R., Vlk M. Combination of Er: YAG laser and photodynamic therapy in the treatment of nodular basal cell carcinoma. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 2008, Vol. 40(2), рр. 153-158.; Rhodes L. E. et al. Photodynamic therapy using topical methyl aminolevulinate vs surgeryfor nodular basal cell carcinoma: results of a multicenter randomized prospective trial. Archives of dermatology, 2004, Vol. 140(1), рр. 17-23.; Rhodes L. E. et al. Five-year follow-up of a randomized, prospective trial of topical methyl aminolevulinate photodynamic therapy vs surgery for nodular basal cell carcinoma. Archives of dermatology, 2007, Vol. 143(9), рр. 1131-1136; Berroeta L. et al. A randomized study of minimal curettage followed by topical photodynamic therapy compared with surgical excision for low-risk nodular basal cell carcinoma. British Journal of Dermatology, 2007, Vol. 157(2), рр. 401-403.

  4. 4
    Academic Journal

    Πηγή: Biomedical Photonics; Том 14, № 1 (2025); 36-46 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/697/482; Beika M., Harada Y., Minamikawa T., Yamaoka Y., Koizumi N., Murayama Y., Konishi H., Shiozaki A., Fujiwara H., Otsuji E., Takamatsu T. and Tanaka H. Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid. International Journal of Molecular Sciences, 2021, Vol. 22(18), рр. 10121. https://doi.org/10.3390/ijms221810121; Du H., Amy Fuh R., Li J., Corkan L.A. and S. Lindsey J. PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochemistry and Photobiology, 1998, Vol. 68, рр.141-142. https://doi.org/10.1111/j.1751-1097.1998.tb02480.x; Dixon J. M., Taniguchi M. and S. Lindsey J. PhotochemCAD 2. A refined program with accompanying spectral data bases for photochemical calculations. Photochemistry and Photobiology, 2004, Vol. 81, рр. 212-213. https://doi.org/10.1111/j.1751-1097.2005.tb01544.x; Khilov, Aleksandr Vladimirovich, et al. "Analytical model of fluorescence intensity for the estimation of fluorophore localisation in biotissue with dual-wavelength fluorescence imaging." Quantum Electronics, 2021, Vol. 51(2), рр. 95. DOI 10.1070/QEL17503; Efendiev K., Alekseeva P.M., Bikmukhametova I.R., Piterskova L.S., Orudzhova K.F., Agabekova U.D., Slovokhodov E.K. and Loschenov V.B. Comparative investigation of 5-aminolevulinic acid and hexyl aminolevulinate-mediated photodynamic diagnostics and therapy of cervical dysplasia and vulvar leukoplakia. Laser Physics Letters, 2021, Vol. 18(6), рр. 065601. DOI 10.1088/1612-202X/abf5cf; Kirillin, M., Khilov, A., Kurakina, D., Orlova, A., Perekatova, V., Shishkova, V., . & Sergeeva, E. (2021). Dual-wavelength fluorescence monitoring of photodynamic therapy: from analytical models to clinical studies. Cancers, 13(22), рр. 5807. https://doi.org/10.3390/cancers13225807; Bagdonas S., Ma L.W., Iani V., Rotomskis R., Juzenas P. and Moan J. Phototransformations of 5-Aminolevulinic Acid–induced Protoporphyrin IX in vitro: A Spectroscopic Study. Photochemistry and photobiology, 2000, Vol. 72(2), рр. 186-192. https://doi.org/10.1562/0031-8655(2000)0720186POAAIP2.0.CO2; Ogbonna Sochi J., Y. York W.B., Nishimura T., Hazama H., Fukuhara H., Inoue K. and Awazu K. Increased fluorescence observation intensity during the photodynamic diagnosis of deeply located tumors by fluorescence photoswitching of protoporphyrin IX. Journal of Biomedical Optics, 2023, рр. 055001-055001. https://doi.org/10.1117/1.JBO.28.5.055001; Sidney Cox G., Bobillier C. and G. Whitten D. Photooxydation and singlet oxygen sensitization by protoporphyrin IX and its photooxydation products. Photochemistry and Photobiology, 1982, Vol. 36, рр. 401-407. https://doi.org/10.1111/j.1751-1097.1982.tb04393.x; Rick K., Sroka R., Stepp H., Kriegmair M.,. Huber R.M, Jacob K. and Baumgartner R. Phototransformations of 5-Aminolevulinic Pharmacokinetics of Saminolevulinic acid-induced protoporphyrin IX in skin and blood. Journal of Photochemistry and Photobiology: Biology, 1997, Vol. 40, рр. 313-319. https://doi.org/10.1016/S1011-1344(97)00076-6; Fritsch C., Lehmann P., Stahl W., Schulte K.W., Blohm E., Lang K., Sies H. and Ruzicka T. Optimum porphyrin accumulation in epithelial skin tumours and psoriatic lesions after topical application of δ-aminolaevulinic acid. British Journal of Cancer, 1999, Vol. 79, рр. 1603-1608. https://doi.org/10.1038/sj.bjc.6690255; Brault D., Aveline B., Delgado O. and Vever-Bizet Ch. Chlorin-type photosensitizers derived from vinyl porphyrins. Photochemistry and Photobiology, 2001, Vol. 73(4), рр. 331-338. https://doi.org/10.1117/12.199160; Robinson D. J., de Brujin H. S., van der Veen N., Stringer M. R., Brown S. B. and Star W. M. Fluorescence photobleaching of ALA-induced PpIX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochemistry and Photobiology, 1998, Vol. 67, рр. 140-149. https://doi.org/10.1111/j.1751-1097.1998.tb05177.x; Ogbonna, Sochi J., Katsuyoshi Masuda, and Hisanao Hazama. "The effect of fluence rate and wavelength on the formation of protoporphyrin IX photoproducts. "Photochemical & Photobiological Sciences, 2024, Vol. 23(9), рр.1627-1639. https://doi.org/10.1007/s43630-024-00611-9

  5. 5
  6. 6
    Academic Journal

    Πηγή: Biomedical Photonics; Том 13, № 4 (2024); 33-39 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/679/476; Rogers H.W., Weinstock M.A., Harris A.R., Hinckley M.R., Feldman S.R., Fleischer A.B., Coldiron B.M. Incidence estimate of nonmelanoma skin cancer in the United States, 2006 // Arch Dermatol. – 2010. − Vol. 146(3). – Р. 283-287.; Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Состояние онкологической помощи населению России в 2023 году. − Москва: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. − 2024. – С. 262.; Firnhaber J.M. Basal cell and cutaneous squamous cell carcinomas: diagnosis and treatment // American family physician. – 2020. – Vol. 102(6). – Р. 339-346.; Rosen T., Lebwohl M.G. Prevalence and awareness of actinic keratosis: barriers and opportunities // Journal of the American Academy of Dermatology. – 2013. – Vol. 68(1). – Р. S2-S9.; Karia P.S., Han J., Schmults C.D. Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012 // Journal of the American Academy of Dermatology. – 2013. – Vol. 68(6). – Р. 957-966.; Игнатова А.В. Актуальные проблемы лечения местно-распространенного и метастатического плоскоклеточного рака кожи // Современная онкология. – 2021. – Т. 23. – №. 1. – С. 94-98.; Nehal K.S., Bichakjian C.K. Update on keratinocyte carcinomas // New England Journal of Medicine. – 2018. – Vol. 379(4). – Р. 363-374.; Dirschka T. et al. Real-world approach to actinic keratosis management: practical treatment algorithm for ofce-based dermatology // Journal of Dermatological Treatment. – 2017. – Vol. 28(5). – Р. 431-442.; Клинические рекомендации РФ 2020 «Плоскоклеточный рак кожи».; Calzavara-Pinton P.G. et al. Methylaminolaevulinate-based photodynamic therapy of Bowen’s disease and squamous cell carcinoma // British Journal of Dermatology. – 2008. – Vol. 159(1). – Р. 137-144.; Keyal U. et al. Present and future perspectives of photodynamic therapy for cutaneous squamous cell carcinoma // Journal of the American Academy of Dermatology. – 2019. – Vol. 80(3). – Р. 765-773.; Filonenko E.V., Okushko S.S. Actinic keratosis (review of literature) // Biomedical Photonics. – 2022. – Vol. 11(1). – P. 37-48. doi:10.24931/2413–9432–2022–11-1-37-48.; Kaprin A.D., Ivanova-Radkevich V.I., Urlova A.N., Asratov A.T., Gushchina Yu., Sh., Libo L., Xiaojun C., Filonenko E.V. Photodynamic therapy opportunities for the treatment of erythroplasia of Queyrat // Biomedical Photonics. – 2020. – Vol. 9(1). – P. 34-41. doi:10.24931/2413–9432–2020–9-1–34–41.; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy in the treatment of extramammary Paget disease // Biomedical Photonics. – 2022. – Vol. 11(3). – P. 24-34. doi:10.24931/2413–9432–2022–11-3-24–34.; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy in the treatment of patients with mycosis fungoides // Biomedical Photonics. – 2022. – Vol. 11(1). – P. 27-36. doi:10.24931/2413–9432–2022–11-1-27-37.; Филоненко Е. В., Иванова-Радкевич В. И. Фотодинамическая терапия пациентов с болезнью Боуэна // Biomedical Photonics. – 2024. – Т. 12, №. 4. – С. 22-29.; Wong T. H. et al. British Association of Dermatologists and British Photodermatology Group guidelines for topical photodynamic therapy 2018 // British Journal of Dermatology. – 2019. – Vol. 180(4). – Р. 730-739.; Xu M., Kong L., Jamil M. Advancements in skin cancer treatment: focus on photodynamic therapy: a review // American Journal of Cancer Research. – 2024. – Vol. 14(10). – Р. 5011.; Choi S.H., Kim K.H., Song K.H. Efect of methyl aminolevulinate photodynamic therapy with and without ablative fractional laser treatment in patients with microinvasive squamous cell carcinoma: a randomized clinical trial // JAMA dermatology. – 2017. – Vol. 153(3). – Р. 289-295.; Kübler A. C. et al. Treatment of squamous cell carcinoma of the lip using Foscan-mediated photodynamic therapy // International journal of oral and maxillofacial surgery. – 2001. – Vol. 30(6). – Р. 504-509.; Капинус В.Н., Каплан М.А., Спиченкова И.С., Шубина А.М., Ярославцева-Исаева Е.В. Фотодинамическая терапия эпителиальных злокачественных новообразований кожи // Фотодинамическая терапия и фотодиагностика. – 2014. – Т. 3, № 3. – С. 9-14.; Fargnoli M.C. et al. Photodynamic therapy for the treatment of microinvasive squamous cell carcinoma of the lower lip: a case report // Giornale italiano di dermatologia e venereologia: organo ufciale, Societa italiana di dermatologia e siflografa. – 2014. – Vol. 150(3). – Р. 331-335.; Sotiriou E., Apalla Z., Ioannides D. Complete resolution of a squamous cell carcinoma of the skin using intralesional 5‐aminolevulinic acid photodynamic therapy intralesional PDT for SCC // Photodermatology, Photoimmunology & Photomedicine. – 2010. – Vol. 26(5). – Р. 269-271.; Li Q. et al. Clearance of a thick invasive squamous cell carcinoma after multiple treatments with topical photodynamic therapy // Photomedicine and Laser Surgery. – 2010. – Vol. 28(5). – Р. 703-706.; Rossi R. et al. Squamous cell carcinoma of the eyelid treated with photodynamic therapy // Journal of chemotherapy. – 2004. – Vol. 16(3). – Р. 306-309.; Стрункин Д.Н., Жарикова И.П., Кожевников Ю.А., Задонцева Н.С. Фотодинамическая терапия плоскоклеточного рака кожи щеки (клиническое наблюдение) // Biomedical Photonics. – 2017. – Т. 6, № 2. – С. 38-40.; Wang X. et al. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticlemediated photodynamic therapy in a mouse model // International journal of nanomedicine. – 2015. – Р. 347-355.; Shi L. et al. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles // International Journal of Nanomedicine. – 2013. – Р. 2669-2676.; Mascaraque-Checa M. et al. Metformin overcomes metabolic reprogramming-induced resistance of skin squamous cell carcinoma to photodynamic therapy // Molecular metabolism. – 2022. – Vol. 60. – Р. 101496.; Anand S. et al. Fluorouracil enhances photodynamic therapy of squamous cell carcinoma via a p53-independent mechanism that increases protoporphyrin IX levels and tumor cell death // Molecular cancer therapeutics. – 2017. – Vol. 16(6). – Р. 1092-1101.

  7. 7
    Academic Journal

    Πηγή: Biomedical Photonics; Том 13, № 3 (2024); 42-46 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/661/472; https://www.pdt-journal.com/jour/article/view/661/497; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Je mal A. Global cancer statistics 2020: GLOBOCAN estimates of in cidence and mortality worldwide for 36 cancers in 185 countries // CA Cancer J Clin. – 2021. – Vol.7.; Клинышкова Т.В. Стратегии цервикального скрининга: современный взгляд // Российский вестник акушера-гинеколога. – 2023. – Т.23, № 4. – С. 20-26.; Gosvig C.F., Huusom L.D., Andersen K.K., Duun-Henriksen A.K., Frederiksen K., Iftner A. et al. Long-term follow-up of the risk for cervical intraepithelial neoplasia grade 2 or worse in HPV-negative women after conization // Int J Cancer. – 2015. – Vol. 137(12). – Р. 2927-2933.; Белоцерковцева Л.Д., Давыдов А.И., Шахламова М.Н., Панкратов В.В. Современные концепции лечения пациенток с цервикальной интраэпителиальной неоплазией, ассоциированной с папилломавирусной инфекцией // Вопросы гинекологии, акушерства и перинатологии. – 2018. – Т.17, №4. – С. 120-124.; Зароченцева Н.В., Джиджихия Л.К., Набиева В.Н. Рецидивы цервикальных интраэпителиальных неоплазий после применения эксцизионных методов лечения // Вопросы гинекологии, акушерства и перинатологии. – 2020. – Т.19, №2. – С. 68-77.; Kalliala I., Athanasiou A., Veroniki A.A., Salanti G., Efthimiou O., Raftis N. et al. Incidence and mortality from cervical cancer and other malignancies after treatment of cervical intraepithelial neoplasia: a systematic review and meta-analysis of the literature // Ann Oncol. – 2020. – Vol. 31(2). – Р. 213-27.; Bruno M.T., Cassaro N., Garofalo S., Boemi S. HPV16 persistent infection and recurrent disease after LEEP // Virol J. – 2019. – Vol. 16(1). – Р. 148.; Chen L.M., Liu L., Tao X., He Y., Guo L.P., Zhang H.W. et al. Analysis of recurrence and its influencing factors in patients with cervical HSIL within 24 months after LEEP // Zhonghua Fu Chan Ke Za Zhi. – 2019. – Vol. 54(8). – Р. 534-40.; Кулаков В.И., Прилепская В.И., Минкина Г.Н., Роговская С.И. Профилактика рака шейки матки // Руководство для врачей – Кулаков В.И. – 2007. – С. 57.; Wu J., Jia Y., Luo M., Duan Z. Analysis of Residual/Recurrent Disease and Its Risk Factors after Loop Electrosurgical Excision Procedure for High-Grade Cervical Intraepithelial Neoplasia // Gynecol Obstet Invest. – 2016. – Vol. 81(4). – Р. 296-301.; Palmer J.E., Raveеnscrofрt S., Eсllis K., Crossяley J., Dudding N., Smith J.H. et al. Does Hoffman S.R., Le T., Lockhart A., Sanusi A., Dal Santo L., Davis M. et al. Patterns of persistent HPV infection after treatment for cervical intraepithelial neoplasia (CIN): A systematic review // Int J Cancer. – 2017. – Vol. 141(1). – Р. 8-23.; Kong T.W., Son J.H., Chang S.J., Paek J., Lee Y., Ryu H.S. Value of endocervical margin and high-risk human papillomavirus status after conization for high-grade cervical intraepithelial neoplasia, adenocarcinoma in situ, and microinvasive carcinoma of the uterine cervix // Gynecol Oncol. – 2014. – Vol. 135(3). – Р. 468-73.; Zhang H., Zhang T., You Z., Zhang Y. Positive Surgical Margin, HPV Persistence and Expression of Both TPX2 and PD-L1 Are Associated with Persistence/Recurrence of Cervical Intraepithelial Neoplasia after Cervical Conization // PLoS One. – 2015. – Vol. 10(12).; Poomtavorn Y., Tanprasertkul C., Sammor A., Suwannarurk K., Thaweekul Y. Predictors of Absent High-grade Cervical Intraepithelial Neoplasia (CIN) in Loop Electrosurgical Excision Procedure Specimens of Patients with Colposcopic Directed Biopsy-Confirmed High-Grade CIN // Asian Pac J Cancer Prev. – 2019. – Vol. 20(3). – Р. 849-54.; Uijterwaal M.H., Kocken M., Berkhof J., Bekkers R.L., Verheijen R.H., Helmerhorst T.J., Meijer CJ. Posttreatment assessment of women at risk of developing high-grade cervical disease: proposal for new guidelines based on data from the Netherlands // J Low Genit Tract Dis. – 2014. – Vol. 18(4). – Р. 338-43.; Velentzis L.S., Brotherton J.M.L., Canfell K. Recurrent disease after treatment for cervical pre-cancer: determining whether prophylactic HPV vaccination could play a role in prevention of secondary lesions // Climacteric. – 2019. – Vol. 22(6). – Р. 596-602.; Santesso N., Mustafa R.A., Wiercioch W., Kehar R., Gandhi S., Chen Y., et al. Systematic reviews and meta-analyses of benefits and harms of cryotherapy, LEEP, and cold knife conization to treat cervical intraepithelial neoplasia // Int J.Gynaecol Obstet. – 2016. – Vol. 132(3). – Р. 266-71.; D’Alessandro P., Arduino B., Borgo M., Saccone G., Venturella R., Di Cello A. et al. Loop Electrosurgical Excision Procedure versus Cryotherapy in the Treatment of Cervical Intraepithelial NeoplasЭia: A Sлystemеatic Review and Meta-Analysis of Randomized Controlled Trials // Gynecol Minim Invкasive Ther. – 2018. – Vol. 7(4). Р. 45-51.; Fernández-Montolí M.E., Tous S., Medina G., Castellarnau M., García-Tejedor A., de Sanjosé S. Long-term predictors of residual or recurrent cervical intraepithelial neoplasia 2–3 after treatment with a large loop excision of the transformation zone: a retrospective study // BJOG. – 2020. – Vol. 127(3). – Р. 377-87.; «Флуоресцентная диагностика и фотодинамическая терапия в онкологии». Под редакцией В.И. Чиссова, Е.В. Филоненко. Москва. – 2012. – С. 160-173.

  8. 8
    Academic Journal

    Πηγή: Biomedical Photonics; Том 13, № 2 (2024); 43-48 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/652/467; https://www.pdt-journal.com/jour/article/view/652/494; Filonenko E. V. Clinical implementation and scientific development of photodynamic therapy in Russia in 2010-2020 // Biomed. Photonics. – 2021. – Т. 10. – С. 4-22.; Zharkova N. N. et al. Fluorescence observations of patients in the course of photodynamic therapy of cancer with the photosensitizer PHOTOSENS // Photodynamic Therapy of Cancer II. – SPIE, 1995. – Т. 2325. – С. 400-403.; Sokolov V. V. et al. Clinical fluorescence diagnostics in the course of photodynamic therapy of cancer with the photosensitizer PHO-TOGEM // Photodynamic Therapy of Cancer II. – SPIE, 1995. – Т. 2325. – С. 375-380.; Filonenko E. V. et al. Photodynamic therapy in the treatment of intraepithelial neoplasia of the cervix, vulva and vagina // Bio-medical Photonics. – 2021. – Т. 9. – №. 4. – С. 31-39. https://doi.org/10.24931/2413-9432-2020-9-4-31-39.; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy of psoriasis // Biomedical Photonics. – 2023. – Т. 12. – №. 1. – С. 28-36. doi:10.24931/2413-9432–2023-12-1-28-36.; Ivanova-Radkevich V. I. Biochemical basis of selective accumulation and targeted delivery of photosensitizers to tumor tissues // Biochemistry (Moscow). – 2022. – Т. 87. – №. 11. – С. 1226-1242. https://doi.org/10.1134/S0006297922110025.; Lai H. W., Nakayama T., Ogura S. Key transporters leading to specific protoporphyrin IX accumulation in cancer cell following administration of aminolevulinic acid in photodynamic therapy/diagnosis // International Journal of Clinical Oncology. – 2021. – Т. 26. – С. 26-33; Brandsch M. Drug transport via the intestinal peptide transporter PepT1 // Current opinion in pharmacology. – 2013. – Т. 13. – №. 6. – С. 881-887.; Döring F. et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications // The Journal of clinical investigation. – 1998. – Т. 101. – №. 12. – С. 2761-2767.; Hagiya Y. et al. Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer // Photodiagnosis and photodynamic therapy. – 2013. – Т. 10. – №. 3. – С. 288-295.; Xie Y., Hu Y., Smith D. E. The proton‐coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5‐aminolevulinic acid // British journal of pharmacology. – 2016. – Т. 173. – №. 1. – С. 167-176.; Jappar D. et al. Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and Pept1 knockout mice // Drug metabolism and disposition. – 2010. – Т. 38. – №. 10. – С. 1740-1746.; Neumann J., Brandsch M. δ-Aminolevulinic acid transport in cancer cells of the human extrahepatic biliary duct // Journal of Pharmacology and Experimental Therapeutics. – 2003. – Т. 305. – №. 1. – С. 219-224.; Chung C. W. et al. Aminolevulinic acid derivatives-based photodynamic therapy in human intra-and extrahepatic cholangiocarcinoma cells // European Journal of Pharmaceutics and Biopharmaceutics. – 2013. – Т. 85. – №. 3. – С. 503-510.; Hagiya Y. et al. Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro //Photodiagnosis and photodynamic therapy. – 2012. – Т. 9. – №. 3. – С. 204-214.; Lai H. W. et al. Novel strategy to increase specificity of ALA-Induced PpIX accumulation through inhibition of transporters involved in ALA uptake // Photodiagnosis and Photodynamic Therapy. – 2019. – Т. 27. – С. 327-335.; Tchernitchko D. et al. A variant of peptide transporter 2 predicts the severity of porphyria-associated kidney disease // Journal of the American Society of Nephrology. – 2017. – Т. 28. – №. 6. – С. 1924-1932.; Xiang J. et al. PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes // Brain research. – 2006. – Т. 1122. – №. 1. – С. 18-23.; Anderson C. M. H. et al. Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+-coupled nutrient carri ers coexpressed in the small intestine // Journal of Pharmacology and Experimental Therapeutics. – 2010. – Т. 332. – №. 1. – С. 220-228.; Boll M. et al. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters // Journal of Biological Chemistry. – 2002. – Т. 277. – №. 25. – С. 22966-22973.; Kristensen A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation //Pharmacological reviews. – 2011. – Т. 63. – №. 3. – С. 585-640.; Zhou Y. et al. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents // Journal of Biological Chemistry. – 2012. – Т. 287. – №. 42. – С. 35733-35746.; https://www.proteinatlas.org/ENSG00000115657-ABCB6/tissue; Tran T. T. et al. Neurotransmitter Transporter Family Including SLC 6 A 6 and SLC 6 A 13 Contributes to the 5‐Aminolevulinic Acid (ALA)‐Induced Accumulation of Protoporphyrin IX and Photodamage, through Uptake of ALA by Cancerous Cells // Photochemistry and photobiology. – 2014. – Т. 90. – №. 5. – С. 1136-1143.; Bermudez Moretti M. et al. δ-aminolevulinic acid transport in murine mammary adenocarcinoma cells is mediated by BETA transporters // British journal of cancer. – 2002. – Т. 87. – №. 4. – С. 471-474.; Manceau H. et al. TSPO2 translocates 5‐aminolevulinic acid into human erythroleukemia cells // Biology of the Cell. – 2020. – Т. 112. – №. 4. – С. 113-126.; Krishnamurthy P., Schuetz J. D. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival // Biometals. – 2005. – Т. 18. – С. 349-358.; Desuzinges-Mandon E. et al. ABCG2 transports and transfers heme to albumin through its large extracellular loop // Journal of biological chemistry. – 2010. – Т. 285. – №. 43. – С. 33123-33133.; Horsey A. J. et al. The multidrug transporter ABCG2: still more questions than answers// Biochemical Society Transactions. – 2016. – Т. 44. – №. 3. – С. 824-830.; Wu X. G., Peng S. B., Huang Q. Transcriptional regulation of breast cancer resistance protein // Yi Chuan= Hereditas. – 2012. – Т. 34. – №. 12. – С. 1529-1536.; Krishnamurthy P. et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme // Journal of Biological Chemistry. – 2004. – Т. 279. – №. 23. – С. 24218-24225.; Morita M. et al. Fluorescence‐based discrimination of breast cancer cells by direct exposure to 5‐aminolevulinic acid // Cancer medicine. – 2019. – Т. 8. – №. 12. – С. 5524-5533.; Boswell-Casteel R. C., Fukuda Y., Schuetz J. D. ABCB6, an ABC transporter impacting drug response and disease // The AAPS journal. – 2018. – Т. 20. – С. 1-10.; Quigley J. G. et al. Identification of a human heme exporter that is essential for erythropoiesis // Cell. – 2004. – Т. 118. – №. 6. – С. 757-766.; Quigley J. G. et al. Cloning of the cellular receptor for feline leukemia virus subgroup C (FeLV-C), a retrovirus that induces red cell aplasia // Blood, The Journal of the American Society of Hematology. – 2000. – Т. 95. – №. 3. – С. 1093-1099.; Alves L. R. et al. Heme-oxygenases during erythropoiesis in K562 and human bone marrow cells // PLoS One. – 2011. – Т. 6. – №. 7. – С. e21358.; Chiabrando D. et al. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation // The Journal of clinical investigation. – 2012. – Т. 122. – №. 12. – С. 4569-4579.; Zhou S. et al. FLVCR1 predicts poor prognosis and promotes malignant phenotype in esophageal squamous cell carcinoma via upregulating CSE1L // Frontiers in Oncology. – 2021. – Т. 11. – С. 660955.; Brown J. K., Fung C., Tailor C. S. Comprehensive mapping of receptor-functioning domains in feline leukemia virus subgroup C receptor FLVCR1 // Journal of virology. – 2006. – Т. 80. – №. 4. – С. 1742-1751.; Duffy S. P. et al. The Fowler syndrome-associated protein FLVCR2 is an importer of heme // Molecular and cellular biology. – 2010. – Т. 30. – №. 22. – С. 5318-5324.; Hayashi M. et al. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid // PLoS One. – 2015. – Т. 10. – №. 3. – С. e0122351.

  9. 9
    Academic Journal

    Συνεισφορές: The work was supported by the BRFFR (contract no. Б20ГРМГ-001). The authors also express their sincere gratitude to Ph. D. (Biology), Associate Professor S. I. Gordey – Head of the Department of winter grain crops in RUE “Scientific and Practical Center of the National Academy of Sciences of Belarus for Agriculture” for providing seeds of winter wheat varieties, Работа выполнена при финансовой поддержке БРФФИ (договор № Б20ГРМГ-001). Авторы также выражают благодарность канд. биол. наук, доценту С. И. Гордею – руководителю отдела озимых зерновых культур в РУП «Научно-практический центр НАН Беларуси по земледелию» за предоставление семян сортов озимой пшеницы

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 68, № 1 (2024); 46-54 ; Доклады Национальной академии наук Беларуси; Том 68, № 1 (2024); 46-54 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1174/1175; Peer, W. A. Flavonoids as Signal Molecules: Targets of Flavonoid Action / W. A. Peer, A. S. Murphy // The Science of Flavonoids. – 2008. – P. 239–268. https://doi.org/10.1007/978-0-387-28822-2_9; Zhao, H. J. Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaves under high irradiance and oxidative stress / H. J. Zhao, Q. Zou // Photosynthetica. – 2002. – Vol. 40, N 4. – P. 523–527. https://doi.org/10.1023/a:1024339716382; 5-Aminolevulinic acid affects fruit coloration, growth, and nutrition quality of Litchi chinensis Sonn. cv. Feizixiao in Hainan, tropical China / S. Feng [et al.] // Sci. Hortic. – 2015. – Vol. 193. – P. 188–194. https://doi.org/10.1016/j.scienta.2015.07.010; Zhang, Zh. Effects of 5-aminolevulinic acid on Anthocyanin synthesis in Vitis Vinifera ‘Crimson Seedless’ grapes at the transcriptomics level / Zh. Zhang // J. Horticultural Sci. Biotechnol. – 2021. – Vol. 96, N 6. – P. 797–807. https://doi.org/10.1080/14620316.2021.1930589; Молекулярно-генетические механизмы регуляции дигидрофлавонол редуктазы и транскрипционного фактора HY5 экзогенной 5-аминолевулиновой кислотой в проростках озимого рапса / Н. Г. Аверина [и др.] // Докл. Нац. акад. наук Беларуси. – 2020. – Т. 64, № 3. – С. 317–324. https://doi.org/10.29235/1561-8323-2020-64-3-317-324; Молекулярно-генетические механизмы формирования окраски плодов и семян растений / В. Ф. Аджиева [и др.] // Вавиловский журн. генетики и селекции. – 2015. – Т. 19, № 5. – С. 561–573. https://doi.org/10.18699/vj15.073; Shoeva, O. Yu. Anthocyanins participate in the protection of wheat seedlings against cadmium stress / O. Yu. Shoeva, E. K. Khlestkina // Cereal Research Communications. – 2018. – Vol. 46, N 2. – P. 242–252. https://doi.org/10.1556/0806.45.2017.070; Anthocyanins participate in protection of wheat seedlings from osmotic stress / O. Yu. Shoeva [et al.] // Cereal Research Communications. – 2017. – Vol. 45, N 1. – P. 47–56. https://doi.org/10.1556/0806.44.2016.044; Mabry, T. J. The systematic identification of flavonoids / T. J. Mabry, K. R. Markham, M. B. Thomas. – Berlin: Heidelberg, 1970. – P. 261–266. https://doi.org/10.1007/978-3-642-88458-0; Шлык, А. А. О спектрофотометрическом определении хлорофиллов а и b / А. А. Шлык // Биохимия. – 1968. – Т. 33, вып. 2. – С. 275–285.; Misra, N. Effect of Salt Stress on Proline Metabolism in Two High Yielding Genotypes of Green Gram / N. Misra, A. K. Gupta // Plant Sci. – 2005. – Vol. 169, N 2. – P. 331–339. https://doi.org/10.1016/j.plantsci.2005.02.013; Kruse E., Mock H.-P., Grimm B. Coproporphyrinogen III oxidase from barley and tobacco – sequence analysis and initial expression studies / E. Kruse, H.-P. Mock, B. Grimm // Planta. – 1995. – Vol. 196. – P. 796–803. https://doi.org/10.1007/bf01106776; Shemin, D. Delta-aminolevulinic acid degydrase from Rhodopseudomonas sphaeroides / D. Shemin // Methods in Enzymology / eds. S. P. Colowick, N. O. Koplan. – Academic Press, 1962. – Vol. 5. – P. 883–884. https://doi.org/10.1016/s00766879(62)05333-1; Аверина, Н. Г. Метаболические перестройки и регуляция биосинтеза антоцианов в растениях озимого рапса (Brassica napus L.) под действием 5-аминолевулиновой кислоты / Н. Г. Аверина, А. В. Емельянова // Сб. тез. конф. «Молекулярные, мембранные и клеточные основы функционирования биосистем». – Минск, 2022. – С. 49.; The genomes uncoupled – dependent signaling pathway coordinates plastid biogenesis with the synthesis of anthocyanins / A. S. Richter [et al.] // Phil. Trans. R. Soc. B. – 2020. – Vol. 375, N 1801. – P. 1–13. https://doi.org/10.1098/rstb.2019.0403; https://doklady.belnauka.by/jour/article/view/1174

  10. 10
    Academic Journal

    Πηγή: Biomedical Photonics; Том 12, № 1 (2023); 28-36 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/582/411; https://www.pdt-journal.com/jour/article/view/582/437; Клинические рекомендации РФ 2023 «Псориаз»; Кубанова А.А., Кисина В.И., Блатун Л.А. Рациональная фармакотерапия заболеваний кожи и инфекций, передаваемых половым путем // Руководство для практикующих врачей. – 2005. – С. 882; Lowes M.A., Suárez-Fariñas M., Krueger J.G. Immunology of psoriasis // Annu. Rev. Immunol – 2014. – Vol. 32. – Р. 227-255 doi:10.1146/annurev-immunol-032713-120225; Усатине Р.П., Смит М.А., Мэйе Э.Дж. Атлассправочник практикующего врача. Дерматология. – 2012. – С. 536; Кей Ш.К., Стратигос Д.А., Лио П.А., Джонсон Р.А. Детская дерматология // Цветной атлас и справочник / Кей Шу-Мей Кэйн и др.; пер. с англ. под ред. О. Л. Иванова, А. Н. Львова. – М. : Издательство Панфилова; БИНОМ. Лаборатория знаний. 2011. – С. 496; Kubanov А.А., Bogdanova E.V. Dermatovenereology of Russian Federation in 2020: Working Under a Pandemic // Vestnik Dermatologii i Venerologii. – 2021. – Vol. 97(4). – Р. 08-32. doi: https://doi.org/10.25208/vdv1261; Zhang P., Wu M.X. A clinical review of phototherapy for psoriasis // Lasers Med. Sci. – 2018. – Vol. 33. – Р. 173-180. doi:10.1007/s10103-017-2360-1; Campbell J. Safe and effective use of phototherapy and photochemotherapy in the treatment of psoriasis // Br. J. Nurs. – 2020. – Vol. 29. – Р. 547-552. doi:10.12968/bjon.2020.29.10.547; Olisova O.Yu., Garanyan L.G. Epidemiology, etiopathogenesis, comorbidity in psoriasis – new facts // Russian Journal of Skin and Venereal Diseases (Rossiyskii Zhurnal Kozhnykh i Venericheskikh Boleznei). – 2017. – Vol. 20(4). – Р. 214-219 (in Russian). doi: http://dx.doi.org/:10.18821/1560-9588-2017-20-4-214-219; Fitch E., Harper E., Skorcheva I., Kurtz S.E., Blauvelt A. Pathophysiology of psoriasis: Recent advances on IL-23 and TH17 cytokines // Curr. Rheumatol. Rep. – 2007. – Vol. 9. – Р. 461-467 doi:10.1007/s11926-007-0075-1; Wang A., Bai Y.P. Dendritic cells: The driver of psoriasis // J. Dermatol. – 2020. – Vol. 47. – Р. 104-113. doi:10.1111/1346-8138.15184; Ogawa E., Sato Y., Minagawa A., Okuyama R. Pathogenesis of psoriasis and development of treatment // J. Dermatol. – 2018. – Vol. 45. – Р. 264-272. doi:10.1111/1346-8138.14139; Псориаз. Руководство по диагностике и терапии разных форм псориаза и псоритического артрита // монография. – СПб.: Изд-во ДЕАН. – 2014. – С. 486; Терлецкий О.В. Псориаз. Дифференциальная диагностика «псориазоподобных» редких дерматозов // Терапия. – СПб.: ДЕАН. – 2007. – С. 512; Menter A., Korman N.J., Elmets C.A., Feldman S.R., Gelfand J.M., Gordon K.B., Gottlieb A., Koo J.Y.M., Lebwohl M., Lim H.W. Guidelines of care for the management of psoriasis and psoriatic arthritis. Section 5. Guidelines of care for the treatment of psoriasis with phototherapy and photochemotherapy // J. Am. Acad. Dermatol. – 2010. – Vol. 62. – Р. 114-135. doi:10.1016/j.jaad.2009.08.026; Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., Kulbacka J. Photodynamic therapy–Mechanisms, photosensitizers and combinations // Biomed. Pharmacother. – 2018. – Vol. 106. – Р. 1098-1107. doi:10.1016/j.biopha.2018.07.049; Mehta D., Lim H.W. Ultraviolet B Phototherapy for Psoriasis: Review of Practical Guidelines // Am. J. Clin. Dermatol. – 2016. – Vol. 17. – Р. 125-133. doi:10.1007/s40257-016-0176-6; Stern R.S. Psoralen and Ultraviolet A Light Therapy for Psoriasis // N. Engl. J. Med. – 2007. – Vol. 357. – Р. 682-690. doi:10.1056/NEJMct072317; Reshetov I.V., Korenev S.V., Romanko Yu.S. Modern aspects of photodynamic therapy of basal cell skin cancer // Biomedical Photonics. – 2022. – Vol. 11(3). – Р. 35-39. doi:10.24931/2413–9432–2022–11-3-35-39; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy in the treatment of extramammary Paget disease, Biomedical Photonics. – 2022. – Vol. 11(3). – Р. 24-34 doi:10.24931/2413–9432–2022–11-3-24-34; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy in the treatment of patients with mycosis fungoides // Biomedical Photonics. – 2022. – Vol. 11(1). – Р. 27-36 (in Russian). doi:10.24931/2413–9432–2022–11-1-27-36; Byun J.Y., Lee G.Y., Choi H.Y., Myung K.B., Choi Y.W. The expressions of TGF-β1and IL-10 in cultured fibroblasts after ALA-IPL photodynamic treatment // Ann. Dermatol. – 2011. – Vol. 23. – Р. 19-22. doi:10.5021/ad.2011.23.1.19; Tandon Y.K., Yang M.F., Baron E.D. Role of photodynamic therapy in psoriasis: A brief review. Photodermatol. Photoimmunol. Photomed. 2008. – Vol. 24. – Р. 222-230. doi:10.1111/j.1600-0781.2008.00376.x; Kim J.Y., Kang H.Y., Lee E.S., Kim Y.C. Topical 5-aminolaevulinic acid photodynamic therapy for intractable palmoplantar psoriasis // J. Dermatol. – 2007. – Vol. 34. – Р. 37-40. doi:10.1111/j.1346-8138.2007.00213.x; Schleyer V., Radakovic-Fijan S., Karrer S., Zwingers T., Tanew A., Landthaler M., Szeimies R.M. Disappointing results and low tolerability of photodynamic therapy with topical 5-aminolaevulinic acid in psoriasis. A randomized, double-blind phase I/II study // J. Eur. Acad. Dermatol. Venereol. – 2006. – Vol. 20. – Р. 823-828. doi:10.1111/j.1468-3083.2006.01651.x; Radakovic-Fijan S., Blecha-Thalhammer U., Schleyer V., Szeimies R.M., Zwingers T., Hönigsmann H., Tanew A. Topical aminolaevulinic acidbased photodynamic therapy as a treatment option for psoriasis? Results of a randomized, observer-blinded study. Br. J. Dermatol. – 2005. – Vol. 152. – Р. 279-283. doi:10.1111/j.1365-2133.2004.06363.x; Salah M., Samy N., Fadel M. Methylene blue mediated photodynamic therapy for resistant plaque psoriasis // J. Drugs Dermatol. – 2009. – Vol. 8. – Р.42-49; Rook A.H., Wood G.S., Duvic M., Vonderheid E.C., Tobia A., Cabana B. A phase II placebo-controlled study of photodynamic therapy with topical hypericin and visible light irradiation in the treatment of cutaneous T-cell lymphoma and psoriasis // J. Am. Acad. Dermatol. – 2010. – Vol. 63. – Р. 984-990. doi:10.1016/j.jaad.2010.02.039; Calzavara-Pinton P.G., Rossi M.T., Aronson E., Sala R., Arpaia N., Burtica E.C., Amerio P., Virgili A., Rossi R., Buggiani G. A retrospective analysis of real-life practice of off-label photodynamic therapy using methyl aminolevulinate (MAL-PDT) in 20 Italian dermatology departments. Part 1: Inflammatory and aesthetic indications // Photochem. Photobiol. Sci. – 2013. – Vol. 12. – Р. 148-157. doi:10.1039/c2pp25124h; Shaheen M.A., Dakhli A.O., Hassen S.I. Comparison between the Efficacy of Intense Pulsed Light (I.P.L.) versus Photo-dynamic Therapy (P.D.T.) with Methylene-Blue in the Treatment of Psoriatic nails // Photodiagnosis Photodyn Ther. – 2023. – Vol. 19. – Р. 103298 doi:10.1016/j.pdpdt.2023.103298. Epub ahead of print. PMID: 36682430; Tehranchinia Z., Barzkar N., Mohammad Riahi S., Khazan M. A comparison of the effects of clobetasol 0.05% and photodynamic therapy using aminolevulinic acid with red light in the treatment of severe nail psoriasis // J. Lasers Med. Sci. – 2020. – Vol. 11. – Р. 3-7 doi:10.15171/jlms.2020.02; Carrenho L.Z.B., Moreira C.G., Vandresen C.C., Gomes R., Gonçalves A.G., Barreira S.M.W., Noseda M.D., Duarte M.E.R., Ducatti D.R.B., Dietrich M. Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin // Photodiagnosis Photodyn. Ther. – 2015. – Vol. 12. – Р. 444-458. doi:10.1016/j.pdpdt.2015.05.003; Liu H.Q., Wang Y.M., Li W.F., Li C., Jiang Z.H., Bao J., Wei J.F., Jin H.T., Wang A.P. Anti-Psoriasis Effects and Mechanisms of A-(8-Quinolinoxy) Zinc Phthalocyanine-Mediated Photodynamic Therapy // Cell. Physiol. Biochem. – 2017. – Vol. 44. – Р. 200-214. doi:10.1159/000484647; Lin R.K., Venkatesan P., Yeh C.H., Chien C.M., Lin T.S., Lin C.C., Lin C.C., Lai P.S. Effective topical treatments using innovative NNO-tridentate vanadium(iv) complexes-mediated photodynamic therapy in a psoriasis-like mouse model // J. Mater. Chem. B. – 2022. – Vol. 10. – Р. 4759-4770 doi:10.1039/D2TB00344A; Boehncke W.H., Sterry W., Kaufmann R. Treatment of psoriasis by topical photodynamic therapy with polychromatic light // Lancet. – 1994. – Vol. 343. – Р. 801 doi:10.1016/S0140-6736(94)91883-X; Robinson D.J., Collins P., Stringer M.R., Vernon D.I., Stables G.I., Brown S.B., Sheehan-Dare R.A. Improved response of plaque psoriasis after multiple treatments with topical 5-aminolaevulinic acid photodynamic therapy // Acta Derm. Venereol. – 1999. – Vol. 79. – Р. 451-455 doi:10.1080/000155599750009898; Collins P., Robinson D.J., Stringer M.R., Stables G.I., Sheehan-Dare R.A. The variable response of plaque psoriasis after a single treatment with topical 5-aminolaevulinic acid photodynamic therapy // Br. J. Dermatol. – 1997. – Vol. 137. – Р. 743-749 doi:10.1111/j.1365-2133.1997.tb01111.x; Bissonnette R., Tremblay J.F., Juzenas P., Boushira M., Lui H. Systemic photodynamic therapy with aminolevulinic acid induces apoptosis in lesional T lymphocytes of psoriatic plaques // J. Investig. Dermatol. – 2002. – Vol. 119. – Р. 77-83. doi:10.1046/j.1523-1747.2002.01827.x; Fransson J., Ros A.M. Clinical and immunohistochemical evaluation of psoriatic plaques treated with topical 5-aminolaevulinic acid photodynamic therapy // Photodermatol. Photoimmunol. Photomed. – 2005. – Vol. 21. – Р. 326-332. doi:10.1111/j.1600-0781.2005.00182.x; Smits T., Kleinpenning M.M., Van Erp P.E.J., Van De Kerkhof P.C.M., Gerritsen M.J.P. A placebo-controlled randomized study on the clinical effectiveness, immunohistochemical changes and protoporphyrin IX accumulation in fractionated 5-aminolaevulinic acid-photodynamic therapy in patients with psoriasis // Br. J. Dermatol. – 2006. – Vol. 155. – Р. 429-436 doi:10.1111/j.1365-2133.2006.07290.x

  11. 11
    Academic Journal

    Συνεισφορές: The work was carried out within the framework of state assignment No. 123021000128–4 “Development of a new technology for the treatment of patients with secondary brain tumors and recurrent meningiomas”.

    Πηγή: Biomedical Photonics; Том 12, № 3 (2023); 25-35 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/606/428; https://www.pdt-journal.com/jour/article/view/606/453; Urbanska K., et al. Glioblastoma multiforme – an overview // Contemp. Oncol. – 2014. – Vol. 18 (5). – P. 307-312. doi:10.5114/wo.2014.40559; Schneider T., et al. Gliomas in adults // Dtsch. Arzteblatt Int. – 2010. – Vol. 107 (45). – P. 799-807. doi:10.3238/arztebl.2010.0799; Gerrard G. E., et al. Neuro-oncology practice in the U.K. // Clin. Oncol. – 2003. – Vol. 15(8). – P. 478-484. doi:10.1016/s0936-6555(03)00150-x; Тиглиев Г.С., Чеснокова Е.А., Олюшин В.Е. и соавт. Способ лечения злокачественных опухолей головного мозга с мультифокальным характером роста. – Патент РФ №2236270. – 2004.; Комфорт А.В., Олюшин В.Е., Руслякова И.А. и соавт. Способ фотодиначеской терапии для лечения глиальных опухолей больших полушарий головного мозга. – Патент РФ №2318542. – 2008.; Noske D.P., Wolbers J.G., Sterenborg H.J. Photodynamic therapy of malignant glioma. A review of literature // Clin Neurol Neurosurg. – 1991. – Vol. 93(4). – P. 293-307. doi:10.1016/0303-8467(91)900946. PMID: 1665763; Akimotо J. Photodynamic therapy for malignant brain tumors // Neurol. Med. Chir. – 2016. – Vol. 56 (4). – P. 151-157. doi:10.2176/nmc.ra.2015-0296; Ostrom Q.T., et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013 // Neuro-Oncology. – 2016. – Vol. 18 (5). – P. 1-75. doi:10.1093/neuonc/now207; Quirk B.J., et al. Photodynamic therapy (PDT) in malignant brain tumors – Where do we stand? // Photodiagnosis Photodyn. Ther. – 2015. – Vol. 12(3). – P. 530-544. doi:10.1016/j.pdpdt.2015.04.009; Castano A.P., et al. Mechanisms in photodynamic therapy: Part one – Photosensitizers, photochemistry and cellular localization // Photodiagnosis Photodyn. Ther. – 2004. – Vol. 1 (4). – P.279-293. doi:10.1016/s1572-1000(05)00007-4; Josefsen L. B. and Boyle R. W. Photodynamic therapy: Novel thirdgeneration photosensitizers one step closer? // Br. J. Pharmacol. – 2008. – Vol. 154(1). – P. 1-3.; Dolmans D. E., et al. Photodynamic therapy for cancer // Nature. – 2003. – Vol. 3. – P. 380-387. doi:10.1038/nrc1071; Allison R. R. and Sibata C. H. Oncologic photodynamic therapy photosensitizers: A clinical review // Photodiagnosis Photodyn. Ther. – 2010. – Vol. 7(2). – P. 61-75. doi:10.1016/j.pdpdt.2010.02.001; Stepp H. and Stummer W. 5-ALA in the management of malignant glioma // Lasers Surg. Med. – 2018. – Vol. 50(5). – P. 399-419. doi:10.1002/lsm.22933; Bechet D. et al. Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies // Cancer Treat. Rev. – 2014. - Vol. 40(2). – P. 229-241. doi:10.1016/j.ctrv.2012.07.004; Абрамова О.Б., Дрожжина В.В., Чурикова Т.П. и соавт. Фотодинамическая терапия экспериментальных опухолей различных морфологических типов с липосомальным борированным хлорином е6. // Biomedical Photonics. – 2021. – T. 10, № 3. – C. 12-22. doi.org/10.24931/2413-9432-2021-10-3-12-22; Hiramatsu R. et al. Application of a novel boronated porphyrin (H₂OCP) as a dual sensitizer for both PDT and BNCT // Lasers Surg. Med. – 2011. – Vol. 43(1). – P. 52-58. doi:10.1002/lsm.21026; Bechet D. Neuropilin-1 targeting photosensitization-induced early stages of thrombosis via tissue factor release // Pharm Res. – 2010. – Vol.27(3). – P.468-79. doi:10.1007/s11095-009-0035-8; Rajora A.K., et al. Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics. – 2020. - Vol. 12. – P.592. doi:10.3390/pharmaceutics12060592; Yudintceva N.M., Mikhrina, A.L., Nechaeva, A.S., Shevtsov, M.A. Assessment of heat-shock protein Hsp70 colocalization with markers of tumor stem-like cells. Cell and Tissue Biology. – 2022. – 16(5). – C. 459-464. doi:10.1134/S1990519X22050108; Тагаева Р.Б., Бобков Д.Е., Нечаева А.С. и соавт. Мембранносвязанный белок теплового шока mHsp70 как маркер злокачественных опухолей головного мозга // Российский нейрохирургический журнал имени профессора А. Л. Поленова. – 2023. – Т. 15, №2. – С. 98-101. doi:10.56618/2071; Deng C.X. Targeted drug delivery across the blood-brain barrier using ultrasound technique // Ther. Deliv. – 2010. – Vol. 1(6). – P. 819-848. doi:10.4155/tde.10.66; Banks W.A. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery // Nat. Rev. Drug Discov. – 2016. – Vol. 15. – P. 275-292. doi:10.1038/nrd.2015.21; Fecci P.E., et al. Viruses in the treatment of brain tumors // Neuroimaging Clin. of North America. – 2002. – Vol. 12(4). – P. 553-570. doi:10.1016/s1052-5149(02)00028-x; Patel M.M. and Patel B. M. Crossing the Blood-Brain Barrier: Recent Advances in Drug Delivery to the Brain // CNS Drugs. – 2017. – Vol. 31. – P. 109-133. doi:10.1007/s40263-016-0405-9; Roet M., et al. Progress in euromodulation of the brain: A role for magnetic nanoparticles? // Prog. Neurobiol. – 2019. – Vol. 177. – P. 1-14. doi:10.1016/j.pneurobio.2019.03.002; Baek S. K. et al. Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells // Journal of Neuro-Oncology. – 2011. – Vol. 104(2). – P. 439-448. doi:10.1007/s11060-010-0511-3; Male D. et al. Gold Nanoparticles for Imaging and Drug Transport to the CNS // Int. Rev. Neurobiol. – 2016. – Vol. 130. – P. 155-198. doi:10.1016/bs.irn.2016.05.003; Pass H. I. Photodynamic therapy in oncology: Mechanisms and clinical use // J. Natl. Cancer Inst. – 1993. – Т. 85. – P. 443-456. doi.org/10.1093/jnci/85.6.443; Lukšienë, Ž. Photodynamic therapy: Mechanism of action and ways to improve the efficiency of treatment // Medicina. – 2003. – Vol. 39. – P. 1137-1150.; Vrouenraets M.B. et al. Basic principles, applications in oncology and improved selectivity of photodynamic therapy // Anticancer Res. – 2003. – Vol. 23. – P. 505-522.; Allison R. R. Photodynamic therapy: Oncologic horizons // Future Oncology. – 2014. – Vol. 10(1). – P. 123-142. doi:10.2217/fon.13.176; Scheffer G. L., et al. Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5 and MDR3 P-glycoprotein with panel of monoclonal antibodies // Cancer Res. – 2000. – Vol. 60. – P. 5269-5277.; Schipmann S. et al. Combination of ALA-induced fluorescenceguided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control // J. Neurosurg. – 2020. – Vol. 134. – Р. 426-436.; Akimoto J. et al. First autopsy analysis of the efficacy of intra-operative additional photodynamic therapy for patients with glioblastoma // Brain Tumor Pathol. – 2019. – Vol. 36. – Р. 144-151.; Vermandel M. et al. Standardized intraoperative 5-ALA photodynamic therapy for newly diagnosed glioblastoma patients: a preliminary analysis of the INDYGO clinical trial // J. Neurooncol. – 2021. – Vol. 152. – Р. 501-514.; Ricchelli F. Photophysical properties of porphyrins in biological membranes // J. Photochem. Photobiol. B Biol. – 1995. – Vol. 29. – P. 109118. doi.org/10.1016/1011-1344(95)07155-U; Castano A.P., et al. Mechanisms in photodynamic therapy: Part three – Photosensitizer pharma-cokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis. Photodyn. Ther. – 2005. – Vol. 2. – P. 91–106. doi.org/10.1016/S15721000(05)00060-8; Bartusik-Aebisher D., et al. The Use of Photodynamic Therapy in the Treatment of Brain Tumors—A Review of the Literature // Molecules. – 2022. – Vol.27. – P. 6847. doi.org/10.3390/molecules27206847; Efendiev K., Alekseeva P., Shiryaev A., at al. Near-infrared phototheranostics of tumors with protoporphyrin IX and chlorin e6 photosensitizers // Photodiagnosis and Photodynamic Therapy. 2023. – Vol. 42. – P. 103566. doi:10.1016/j.pdpdt.2023.103566; Церковский Д. А., Маслаков Е. А., Багринцев Д. А. и соавт. Роль фотодинамической терапии в лечении первичных, рецидивных и метастатических злокачественных опухолей головного мозга // Biomedical Photonics. – 2018. – Т. 7, № 2. – С. 37-49. doi:10.24931/2413–9432–2018–7–2–37–49.; Stummer W., et al. Technical principles of microsurgical resection of malignant glioma tissue controlled by protoporphyrin-IX-fluorescence // Acta Neurochir. – 1998. – Vol. 140. – P. 995-1000. doi:10.1007/s007010050206; Stummer W., et al. Long-sustaining response in a patient with nonresectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: Case report // J. Neurooncol. – 2008. – Vol. 87. – P. 103-109. doi.org/10.1007/s11060007-9497-x; Schwartz C. et al. Interstitial photodynamic therapy for de-novo multiforme glioblastoma // WHO IV. Neurooncology. – 2015. – Vol. 17. – P. 214-220. doi.org/10.1093/neuonc/nov235.25; Рында А.Ю., Олюшин В.Е., Ростовцев Д.М. и соавт. Применение интраоперационной фотодинамической терапии в структуре комплексного лечения злокачественных глиом // Журнал «Вопросы нейрохирургии» имени Н.Н. Бурденко. – 2023. – Т. 87, № 1. – C. 25-34. doi.org/10.17116/neiro20238701125; Stummer W., Pitchimeier U., Meinel T., Wiestler O.D., Zanella F., Reulen H.J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicenter phase III trial // Lancet Oncol. – 2006. – Vol.7. – P. 392-401.; Eljamel S. Photodynamic applications in brain tumors: A comprehensive review of the literature // Photodiagnosis Photodyn. Ther. – 2010. – Vol.7. – P. 76-85. doi.org/10.1016/j.pdpdt.2010.02.002; Stylli S.S., Kaye A.H., MacGregor L., Howes M., Rajendra P. Photodynamic therapy of high-grade glioma – long term survival // J. Clin. Neurosci. – 2005. – Vol.12(4). – P. 389-398.; Kostron H., Fiegele T., Akatuna E. Combination of «FOSCAN» mediated fluorescence guided resection and photodynamic treatment as new therapeutic concept for malignant brain tumors // Med. Laser Applic. – 2006. – Vol. 21. – P. 285-290.; Muller P., Wilson B. Photodynamic therapy of brain tumors--a work in progress // Lasers Surg Med. – 2006. – Vol. 38(5). – P. 384-389; Muragaki Y., Akimoto J., Maruyama T., et al. Phase II clinical studyon intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors // J. Neurosurg. – 2013. – Vol. 119(4). – P. 845-852.; Akimoto J., et al. First autopsy analysis of the efficacy of intra-operative additional photodynamic therapy for patients with glioblastoma // Brain Tumor Pathol. – 2019. – Vol. 36. – Р. 144-151.; Shimizu K., Nitta M., Komori T., et al. Intraoperative Photodynamic Diagnosis Using Talaporfin Sodium Simultaneously Applied for Photodynamic Therapy against Malignant Glioma: A Prospective Clinical Study // Frontiers in Neurology. – 2018. – Vol. 9. – P. 1-9. doi.org/10.3389/fneur.2018.00024; Nitta M., Muragaki Y., Maruyama T., et al. T. Role of photodynamic therapy using talaporfin sodium and a semiconductor laser in patients with newly diagnosed glioblastoma // J Neurosurg. – 2018. – Vol. 7. – P. 1-8. doi.org/10.3171/2018.7.JNS18422.; Tatsuya K., Masayuki N., Kazuhide S., et al. Therapeutic Options for Recurrent Glioblastoma-Efficacy of Talaporfin Sodium Mediated Photodynamic Therapy // Pharmaceutics. – 2022. – Vol. 14(2). – P. 353. doi.org/10.3390/pharmaceutics14020353.; Teng C.W., Amirshaghaghi A., Cho S.S., et al. Combined fluorescenceguided surgery and photodynamic therapy for glioblastoma multiforme using cyanine and chlorin nanocluster // J Neurooncol. – 2020. – Vol. 149. – P. 243-252. doi.org/10.1007/s11060-020-03618-1; Maruyama T., Muragaki Y., Nitta M., et al. Photodynamic therapy for malignant brain tumors // Japanese J Neurosurg. – 2016. – Vol. 25. – P. 895.; Kozlikina E.I. et al. The Combined Use of 5-ALA and Chlorin e6 Photosensitizers for Fluorescence-Guided Resection and Photodynamic Therapy under Neurophysiological Control for Recurrent Glioblastoma in the Functional Motor Area after Ineffective Use of 5-ALA: Preliminary Results // Bioengineering. – 2022. – Vol. 9. – P.104. doi.org/10.3390/bioengineering9030104; Hamid S.A., Zimmermann W., et al. In vitro study for photodynamic therapy using Fotolon in glioma treatment // Proc. SPIE. – 2015. – Vol. 9542. – P. 13. doi.org/10.1117/12.2183884; Akimoto J., Fukami S., Ichikawa M., et al Intraoperative Photodiagnosis for Malignant Glioma Using Photosensitizer Talaporfin Sodium // Frontiers in Surgery. – 2019. – Vol. 21. – P. 6-12. doi.org/10.3389/fsurg.2019.00012; Stummer W., Pichlmeier U., Meinel T. Fluorescence-guided surgery with 5 –aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial // Lancet Oncol. – 2006. – Vol. 7. – P. 392-401.; Cramer S.W., Chen C.C. Photodynamic Therapy for the Treatment of Glioblastoma // Front. Surg. – 2020. – Vol. 6. – P. 81. doi.org/10.3389/fsurg.2019.00081.; Schipmann S., et al. Combination of ALA-induced fluorescenceguided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control // J. Neurosurg. – 2020. – Vol. 134. – Р. 426-436.; Mahmoudi K., et al. 5-Aminolevulinic Acid Photodynamic Therapy for the Treatment of High-Grade Gliomas // J. Neurooncol. – 2019. – Vol. 141. – P. 595-607. doi.org/10.1007/s11060-019-03103-4; Chen R., Aghi M.K. Atypical meningiomas // Handb Clin Neurol. – 2020. – Vol. 170. – P. 233-244. doi.org/10.1016/B978-0-12-8221983.00043-4; Kiesel B., et al. G. 5-ALA in suspected low-grade gliomas: Current Role, limitations, and new approaches // Front. Oncol. – 2021. – Vol. 11. – P.699301. doi.org/10.3389/fonc.2021.699301; Решетов И.В., Коренев С.В., Романко Ю.С. Формы гибели клеток и мишени при фотодинамической терапии // Сибирский онкологический журнал. – 2022. – Т. 21, № 5. – С. 149-154. doi:10.21294/18144861-2022-21-5-149-154; Куканов К.К., Воробьёва О.М., Забродская Ю.М. и соавт. Интракраниальные менингиомы: клинико-интраскопические и патоморфологические причины рецидивирования с учетом современных методов лечения (обзор литературы) // Сибирский онкологический журнал. – 2022. – Т. 21, № 4. – C. 110-123. doi.org/10.21294/1814-4861-2022-21-4-110-123; Рында А.Ю., Ростовцев Д.М., Олюшин В.Е., и соавт. Лечебный патоморфоз в тканях злокачественной глиомы после фотодинамической терапии с хлорином е6 (сообщение о двух клинических случаях) // Biomedical Photonics. – 2020. – Т. 9, № 2. – C. 45-54. doi:10.24931/2413–9432–2020–9–2–45–54.; Рында А.Ю., Ростовцев Д.М., Олюшин В.Е. Флуоресцентно-контролируемая резекция астроцитарных опухолей головного мозга – обзор литературы // Российский нейрохирургический журнал имени профессора А.Л. Поленова. – 2018. – Т. 10, № 1. – C. 97-110.; Рында А.Ю., Олюшин В.Е., Ростовцев Д.М. и соавт. Флуоресцентная диагностика с хлорином е6 в хирургии глиом низкой степени злокачественности // Biomedical Photonics. – 2021. – Т. 10, № 4. – С. 35-43. doi.org/10.24931/2413-9432-2021-10-4-35-43; Рында А.Ю., Олюшин В.Е., Ростовцев Д.М. и соавт. Результаты использования интраоперационного флюоресцентного контроля с хлорином Е6 при резекции глиальных опухолей головного мозга // Журнал «Вопросы нейрохирургии» имени Н.Н. Бурденко. – 2021. – Т. 85, № 4. – С.20-28. doi.org/10.17116/neiro20218504120; Рында А.Ю., Олюшин В.Е., Ростовцев Д.М. и соавт. Сравнительный анализ флуоресцентной навигации в хирургии злокачественных глиом с использованием 5-АЛА и хлорина Е6 // Хирургия. Журнал им. Н.И. Пирогова. – 2022. – Т 1. – С. 5-14. doi.org/10.17116/hirurgia20220115; Рында А.Ю., Олюшин В.Е., Ростовцев Д.М. и соавт. Возможности интраоперационной флуоресцентной биовизуализации нервов в нейрохирургической практике // Российский нейрохирургический журнал им. проф. А.Л. Поленова. – 2023. – Т. 15, № 1. – С. 12.

  12. 12
    Academic Journal

    Πηγή: Biomedical Photonics; Том 11, № 4 (2022); 32-40 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/566/407; https://www.pdt-journal.com/jour/article/view/566/448; Состояние онкологической помощи населению в России в 2021 году / Под ред. Каприна А.Д., Старинского В.В., Шахзадовой А.О. // М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «ФМИЦ им. П.А Герцена» Минздрава России. – 2022 – С. 239.; Филоненко Е.В. Флюоресцентная диагностика с аласенсом у больных раком кожи // Фотодинамическая терапия и фотодиагностика. – 2015 – Т.4, №1. – С. 14-17. doi.org/10.24931/2413-9432-2015-4-1-14-17.; Filonenko E.V. Clinical implementation and scientic development of photodynamic therapy in Russia in 2010-2020 // Biomedical Photonics. – 2021 – Т.10 №4. – С.4-22. doi.org/10.24931/2413-9432-2021-9-4-4-22.; Ivanova-Radkevich V.I. Biochemical Basis of Selective Accumulation and Targeted Delivery of Photosensitizers to Tumor Tissues // Biochemistry (Mosc). – 2022 – Vol. 87(11). – P. 1226-1242. doi:10.1134/S0006297922110025.; Szeimies R., Landthaler M. Photodynamic therapy and fluorescence diagnosis of skin cancers // Recent Results Cancer Res. – 2002 – Vol. 160 – P. 240-245. doi:10.1007/978-3-642-59410-6_28.; Andrade C.T., Vollet-Filho J.D., Salvio A.G., Bagnato V.S., Kurachi C. Identi cation of skin lesions through aminolaevulinic acid-mediated photodynamic detection // Photodiagnosis Photodyn Ther. – 2014 – Vol. 11(3). – P. 409-415. doi:10.1016/j.pdpdt.2014.05.006.; Neus S., Gambichler T., Bechara F.G., Wöhl S., Lehmann P. Preoperative assessment of basal cell carcinoma using conventional fluorescence diagnosis // Arch Dermatol Res. – 2009 – Vol. 301(4). – P. 289-294. doi:10.1007/s00403-008-0911-9.; Liutkeviciūte-Navickiene J. et al. Fluorescence diagnostics of skin tumors using 5-aminolevulinic acid and its methyl ester // Medicina (Kaunas). – 2009 – Vol. 45(12). – P. 937 doi:10.3390/medicina45120120.; Won Y., Hong S.H., Yu H.Y., Kwon Y.H., Yun S.J., Lee S.C., Lee J.B. Photodetection of basal cell carcinoma using methyl 5-aminolaevulinate-induced protoporphyrin IX based on fluorescence image analysis // Clin Exp Dermatol. – 2007 – Vol. 32 – P. 423-429.; Filonenko E.V., Ivanova-Radkevich V. Photodynamic therapy in the treatment of extramammary paget’s disease // Biomedical Photonics. – 2022 – Vol. 11(3). – P. 24-34. https://doi.org/10.24931/2413-9432-2022-11-3-24-34.; Tierney E., Hanke C.W. Cost e ectiveness of Mohs micrographic surgery // J Drugs Dermatol. – 2009 – Vol. 8 – P. 914-22.; Tierney E., J. Petersen, C.W. Hanke Photodynamic diagnosis of tumor margins using methyl aminolevulinate before Mohs micrographic surgery // J Am Acad Dermatol. – 2011 – Vol. 64(5). – P. 911-918. doi:10.1016/j.jaad.2010.03.045.; Stenquist B., Ericson M.B., Strandeberg C., Mo¨lne L., Rose´n A., Larko¨ O. et al. Bispectral fluorescence imaging of aggressive basal cell carcinoma combined with histopathological mapping: a preliminary study indicating a possible adjunct to Mohs micrographic surgery // Br J Dermatol. – 2006 – Vol. 154 – P. 305-309.; Wennberg A.M., Gudmundson F., Stenquist B., Ternesten A., Mo¨lne L., Rose´n A. In vivo detection of basal cell carcinoma using imaging spectroscopy // Acta Derm Venereol. – 2000 – Vol. 80 – P. 152.; El Hoshy K., Bosseila M., El Sharkawy D., Sobhi R. Can basal cell carcinoma lateral border be determined by fluorescence diagnosis? Veri cation by Mohs micrographic surgery // Photodiagnosis Photodyn Ther. – 2016 – Vol. 14 – P. 4-8. doi:10.1016/j.pdpdt.2016.01.001.; Jeon S.Y., Kim K.H., & Song K.H. E cacy of Photodynamic Diagnosis-Guided Mohs Micrographic Surgery in Primary Squamous Cell Carcinoma // Dermatologic Surgery. – 2013 – Vol. 39(12). – P. 1774-1783. doi:10.1111/dsu.12359.; Smits T., Kleinpenning M.M., Blokx W.A. et al. Fluorescence diagnosis in keratinocytic intraepidermal neoplasias // J Am Acad Dermatol. – 2007 – Vol. 57 – P. 824-831.; Kleinpenning M.M., Wolberink E.W., Smits T., Blokx W.A.M. et al. Fluorescence diagnosis in actinic keratosis and squamous cell carcinoma // Photodermatol Photoimmunol Photomed. – 2010 – Vol. 26(6). – P. 297-302. doi:10.1111/j.1600-0781.2010.00546.x.; Wan M., et al. Clinical Bene ts of Preoperative Conventional Fluorescence Diagnosis in Surgical Treatment of Extramammary Paget Disease // Dermatol Surg. – 2018 – Vol. 44(3). – P. 375-382. doi:10.1097/DSS.0000000000001329.; Wu M., Huang L., Lu X., Li J., Wang Y., Zang J., Mo X., Shao X., Wang L., Cheng W., He F., Zhang Q., Zhang W., Zhao L. Utility of photodynamic diagnosis plus reflectance confocal microscopy in detecting the margins of extramammary Paget disease // Indian J Dermatol Venereol Leprol. – 2021 – Vol. 87(2). – P. 207-213. doi:10.25259/IJDVL_90_20.; Van der Beek N., Leeuw J., Demmendal C., Bjerring P., Neumann H.A.M. PpIX fluorescence combined with auto-fluorescence is more accurate than PpIX fluorescence alone in fluorescence detection of non-melanoma skin cancer: an intra-patient direct comparison study // Laser Surg Med. – 2012 – Vol. 44 – P. 271-276.; Bosseila M., Mahgoub D., El-Sayed A., Salama D., Abd El-Moneim M., Al-Helf F. Does fluorescence diagnosis have a role in follow up of response to therapy in mycosis fungoides? // Photodiagnosis Photodyn Ther. – 2014 – Vol. 11(4). – P. 595-602. doi:10.1016/j.pdpdt.2014.10.008.; de Leeuw J. et al. Fluorescence detection and diagnosis of non-melanoma skin cancer at an early stage // Lasers in Surgery and Medicine. – 2009 – Vol. 41 – P. 96-103. doi:10.1002/lsm.20739.; Kamrava S.K., Behtaj M., Ghavami Y., Shahabi S., Jalessi M., Afshar E.E., Maleki S. Evaluation of diagnostic values of photo-dynamic diagnosis in identifying the dermal and mucosal squa-mous cell carcinoma // Photodiagnosis Photodyn Ther. – 2012 doi:10.1016/j.pdpdt.2012.03.004.

  13. 13
    Academic Journal

    Πηγή: Biomedical Photonics; Том 11, № 1 (2022); 27-36 ; 2413-9432 ; 10.24931/2413-9432-2022-11-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/532/366; https://www.pdt-journal.com/jour/article/view/532/382; Larocca C., Kupper T., Mycosis Fungoides and Sézary Syndrome // Hematol Oncol Clin North Am. – 2019. – Vol. 33(1). – P.103-120. doi:10.1016/j.hoc.2018.09.001; Keehn C.A., Belongie I.P., Shistik G. et al. The diagnosis, staging, and treatment options for mycosis fungoides // Cancer Control. – 2007. – Vol. 14(2). – P.102-111.; Korgavkar K., Xiong M., Weinstock M. Changing incidence trends of cutaneous T-cell lymphoma // JAMA Dermatol. – 2013. – Vol. 149(11). – P.1295-1299.; Hristov A.C., Tejasvi T., Wilcox R.A. Mycosis fungoides and Sézary syndrome: 2019 update on diagnosis, risk-stratification, and management // Am J Hematol. – 2019. – Vol. 94(9). – P.1027-1041. doi:10.1002/ajh.25577; Willemze R., Jaffe E.S., Burg G. et al. WHO-EORTC classification for cutaneous lymphomas. Blood. – 2005. – Vol. 105(10). – P. 3768- 3785.; Fernández-Guarino M., Jaén-Olasolo P. Photodynamic therapy in mycosis fungoides // Actas Dermosifiliogr. – 2013. – Vol. 104(5). – P. 393-399. doi:10.1016/j.adengl.2012.11.017; Glusac E.J. Criterion by criterion, mycosis fungoides. Am J Dermatopathol. – 2003. – Vol. 25. – P. 264-269.; Kim E.J., Lin J., Junkins-Hopkins J.M. et al. Mycosis fungoides and Sezary syndrome: an update // Curr Oncol Rep. – 2006. – Vol. 8. – P. 376-386.; Trautinger F., Knobler R., Willemze R. et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome // Eur J Cancer. – 2006. – Vol. 42. – P. 1014-1030.; Olsen E., Vonderheid E., Pimpinelli N. et al. Revisions to the staging and classification of mycosis fungoides and Sézary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous task force of the European Organization for Research and Treatment of Cancer (EORTC) // Blood. – 2007). – Vol. 110. – P. 1713-1722. http://dx.doi.org/10.1182/blood-2007-03-05574+9; Olsen E., Whittaker S., Kim Y., Duvic M., Prince H.M., Lessin S.R. Clinical end points and response criteria in mycosis fungoides and Sézary syndrome: a consensus statement of the International Society for Cutaneous Lymphoma, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer // J Clin Oncol. – 2011. – Vol. 29. – P. 2598-2607. http://dx.doi.org/10.1200/JCO.2010.32.0630; Sausville E.A., Eddy J.L., Makuch R.W. Histopathologic diagnosis of mycosis fungoides and Sézary syndrome: definition of three distinctive prognostic groups // Ann Intern Med. – 1998. – Vol. 109. – P. 372-382.; Horwitz S.M., Olsen E.A., Duvic M., Porcu P., Kim Y.H. Review of the treatment of mycosis fungoides and Sézary syndrome: a stagebased approach // J Natl Compr Canc Netw. – 2008. – Vol. 6. – P.436-442.; Jawed S.I., Myskowski P.L., Horwitz S., Moskowitz A., Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part II. Prognosis, management, and future directions // J Am Acad Dermatol. – 2014. – Vol. 70(2). – P. 223–240. doi:10.1016/j.jaad.2013.08.033; Chiarion-Sileni V., Bononi A., Fornasa C.V., Soraru M., Alaibac M., Ferrazzi E. et al. Phase II trial of interferon-alpha-2a plus psolaren with ultraviolet light A in patients with cutaneous T-cell lymphoma // Cancer. – 2002. – Vol. 95. – P. 569-575.; Kaufmann F., Kettelhack N., Hilty N., Kempf W. Unilesional plantar mycosis fungoides treated with topical photodynamic therapy - case report and review of the literature // J Eur Acad Dermatol Venereol. – 2017. – Vol. 31(10). – P. 1633-1637. doi:10.1111/jdv.14160.; Kim S.T., Kang D.Y., Kang J.S., Baek J.W., Jeon Y.S., Suh K.S. Photodynamic therapy with methyl-aminolaevulinic acid for mycosis fungoides // Acta Derm Venereol. – 2012. – Vol. 92(3). – P. 264- 268. doi:10.2340/00015555-1261; Rhodes L.E., de Rie M., Enstrom Y., Groves R., Morken T., Goulden V. et al. Photodynamic therapy using topical methyl aminolevulinate vs surgery for nodular basal cell carcinoma: results of a multicenter randomized prospective trial // Arch Dermatol. – 2004. – Vol. 140. – P. 17-23.; Fritsch C., Homey B., Stahl W., Lehmann P., Ruzicka T., Sies H. Preferential relative porphyrin enrichment in solar keratoses upon topical application of delta-aminolevulinic acid methylester // Photochem Photobiol. – 1998. – Vol. 68. – P. 218-221.; Freeman M., Vinciullo C., Francis D., Spelman L., Nguyen R., Fergin P. et al. A comparison of photodynamic therapy using topical methyl aminolevulinate (Metvix) with single cycle cryotherapy in patients with actinic keratosis: a prospective, randomized study // J Dermatolog Treat. – 2003. – Vol. 14. – P. 99-106.; Boehncke W.H., Koeing K., Ruck A., Kauffman R., Sterry W. In vitro and in vivo effects of photodynamic therapy in cutaneous T cell lymphoma // Acta Derm Venereol. – 1994. – Vol. 74. – P. 201-205.; Lam M., Lee Y., Deng M., Hsia A.H., Morrissey K.A., Yan C., Azzizudin K., Oleinick N.L., McCormick T.S., Cooper K.D., Baron E.D. Photodynamic therapy with the silicon phthalocyanine pc 4 induces apoptosis in mycosis fungoides and sezary syndrome // Adv Hematol. – 2010 – Vol. 896161. doi:10.1155/2010/896161; Rittenhouse-Diakun K., Van Leengoed H., Morgan J., Hryhorenko E., Paszkiewicz G., Whitaker J.E. et al. The role of transferrin receptor (CD71) in photodynamic therapy of activated and malignant lymphocytes using the heme precursor delta-aminolevulinic acid (ALA) // Photochem Photobiol. – 1995. – Vol. 61. – P. 523-528.; Leibovici L., Shoenfeld N., Yehoshua H.A. et al. Activity of porphobilinogen deaminase in peripheral blood mononuclear cells of patients with metastatic cancer // Cancer. –1988. – Vol. 62. – P. 2297-2300.; Lopez R.V., Lange N., Guy R., Bentley M.V. Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters // Adv Drug Del Rev. – 2004. – Vol. 56. – P. 77-94.; Pariser D.M., Lowe N.J., Stewart D.M. et al. Photodynamic therapy with topical methyl aminolevulinate for actinic keratosis: results of a prospective randomized multicenter trial // J Am Acad Dermatol. – 2003. – Vol. 17. – P. 45-56.; Ammann R., Hunziker T.H. Photodynamic therapy for mycosis fungoides after topical photosensitization with 5-aminolevulinic acid // J Am Acad Dermatol. – 1995. – Vol. 33. – P. 541.; Díez-Recio E., Zambrano B., Alonso M.L., De Eusebio E., Martín M., Cuevas J., Jaén P. Topical 5-aminolevulinic acid photodynamic therapy for the treatment of unilesional mycosis fungoides: a report of two cases and review of the literature // Int J Dermatol. – 2008. – Vol. 47. – P. 410-413. http://dx.doi.org/10.1111/j.1365-4632.2008.03177.x.; Edstrom D.W., Portwit A., Ros A.M. Photodynamic therapy with topical 5-aminolevulinic acid for mycosis fungoides: clinical and histological response // Acta Derm Venereol. – 2001. – Vol. 81. – P. 184-188.; Eich D., Eich H.T., Otte T.H., Ghilescu H.G., Stadler R. Photodynamishce Terapie kuntaker T-Zell-Lymphome in besonderer Lokalisation // Hautarzt. – 1999. – Vol. 50. – P. 109-114.; Svanberg K., Andersson T., Killander D., Wang I., Stenram U., Aderson-Engels S., Berg R., Johansson J., Svanberg S. Photodynamic therapy of non-melanoma malignant tumours of the skin using topical delta-aminolaevulinic acid sensitization and laser irradiation // Br J Dermatol. – 1994. – Vol. 130. – P. 743-751.; Wolf P., Fink-Puches R., Cerroni L., Kerl H. Photodynamic therapy for mycosis fungoides after photosensitization with 5-aminolevulinic acid // J Am Acad Dermatol. – 1994. – Vol. 31. – P. 678-680.; Wang I., Bauer B., Anderson-Engels S. Photodynamic therapy utilising topical delta-aminolevulinic acid in non-melanoma skin malignancies of the eyelid and the periocular skin // Acta Oftalm Scan. – 1999. – Vol. 77. – P. 182-188.; Orestein A., Haik J., Tamir J. et al. Photodynamic therapy of cutaneous lymphoma using 5-aminolevulinic acid topical application // Dermatol Surg. – 2000. – Vol. 26. – P. 765-769.; Markham T., Sheehan K., Collins P. Topical 5-aminolevulinic acid photodynamic therapy for tumor-stage mycosis fungoides // Br J Dermatol. – 2001. – Vol. 144. – P. 1262.; Leman J.A., Dick D.C., Morton C.A. Topical 5-ALA photodynamic therapy for the treatment of cutaneous T-cell lymphoma // Clin Exp Dermatol. – 2002. – Vol. 27. – P. 516-518.; Coors E.A., Von den Driesch P. Topical photodynamic therapy for patients with therapy-resistant lesions of cutaneous T-cell lymphoma // J Am Acad Dermatol. – 2004. – Vol. 50. – P. 363-367. http://dx.doi.org/10.1016/S0190; Zane C., Venturini M., Sala R., Calzavara-Pinton P. Photodynamic therapy with mehtylaminolevulinate as a valuable treatment option for unilesional cutaneous T-cell lymphoma // Photodermatol Photoinmunol Photomed. – 2006. – Vol. 22. – P. 254-258.; Fernández-Guarino M., Harto A., Pérez-García B., Montull C., Jaén P. Plaque-phase mycosis fungoides treated with photodynamic therapy: results in 12 patients // Actas dermosifiliogr. – 2010. – Vol. 9. – P. 785-791.; Quéreux G., Brocard A., Saint-Jean M., Peuvrel L., Knol A., Allix R., Khammari A., Renaut J., Dréno B. Photodynamic therapy with methyl-aminolevulinic acid for paucilesional mycosis fungoides: a prospective open study and review of the literature // J Am Acad Dermatol. – 2013. – Vol. 69(6). – P. 890-897. doi:10.1016/j.jaad.2013.07.047.; Pileri A., Sgubbi P., Agostinelli C., Salvatore D.I., Vaccari S., Patrizi A. Photodynamic therapy: an option in mycosis fungoides // Photodiagnosis and Photodynamic Therapy. – 2017. – Vol. 20. – P. 107- 110. http://dx.doi.org/10.1016/j.pdpdt.2017.09.004; Hegyi J., Frey T., Arenberger P. Unilesional mycosis fungoides treated with photodynamic therapy. A case report // Acta Dermatovenerol Alp Pannonica Adriat. – 2008. – Vol. 17(2). – P. 75-78.; Jang M.S., Jang J.Y., Park J.B., Kang D.Y., Lee J.W., Lee T.G., Hwangbo H., Suh K.S. Erratum: Folliculotropic Mycosis Fungoides in 20 Korean Cases: Clinical and Histopathologic Features and Response to Ultraviolet A-1 and/or Photodynamic Therapy // Ann Dermatol. – 2018. – Vol. 30(4). – P. 510. doi:10.5021/ad.2018.30.4.510.

  14. 14
    Academic Journal

    Πηγή: Biomedical Photonics; Том 11, № 3 (2022); 24-34 ; 2413-9432 ; 10.24931/2413-9432-2022-11-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/551/395; https://www.pdt-journal.com/jour/article/view/551/400; Ishizuki S., Nakamura Y. Extramammary Paget’s Disease: Diagnosis, Pathogenesis, and Treatment with Focus on Recent Developments, Curr Oncol, 2021, vol. 28(4), pp. 2969-2986. doi:10.3390/curroncol28040260.; Leong J.Y., Chung P.H. A primer on extramammary Paget’s disease for the urologist, Transl Androl Urol, 2020, vol. 9(1), pp. 93-105. doi:10.21037/tau.2019.07.14.; Shim P.J., Zeitouni N.C. Photodynamic therapy for extramam mary Paget’s disease: A systematic review of the literature, Photodiagnosis Photodyn Ther, 2020, vol. 31, 101911. doi:10.1016/j.pdpdt.2020.101911.; Jones R.E., Austin C., Ackerman A.B. Extramammary Paget’s disease. A critical reexamination, Am J Dermatopathol, 1979, vol. 1(2), pp. 101-132. doi:10.1097/00000372-197900120-00002.; Wagner G., Sachse M.M. Extramammary Paget disease – clinical appearance, pathogenesis, management, Journal der Deutschen Dermatologischen Ges, 2011, vol. 9(6), pp. 448-454. doi:10.1111/ j.1610-0387.2010.07581.x.; Rioli D.I., Samimi M., Beneton N., Hainaut E., Martin L., Misery L., Quereux G. Efficacy and tolerance of photodynamic therapy for vulvar Paget’s disease: a multicentric retrospective study, Eur J Dermatol, 2018, vol. 28(3), pp. 351-355. doi:10.1684/ ejd.2018.3289.; Kanitakis J. Mammary and extramammary Paget’s disease, J Euro Acad Dermatol Venereol, 2007, vol. 21(5), pp. 581-90. doi:10.1111/j.1468-3083.2007.02154.x.; Fardal R.W., Kierland R.R., Clagett O.T., Woolner L.B. Prognosis in cutaneous Paget’s disease, Postgrad Med, 1964, vol. 36, pp. 584-93. doi:10.1080/00325481.1964.11695362.; Siesling S., Elferink M.A.G., van Dijck J.A., Pierie J.P., Blokx W.A. Epidemiology and treatment of extramammary Paget disease in the Netherlands, Eur J Surg Oncol, 2007, vol. 33, pp. 951- 955. doi:10.1016/j.ejso.2006.11.028.; Chanda J.J. Extramammary Paget’s disease: prognosis and relationship of internal malignancy, J Am Acad Dermatol, 1985, vol. 13, pp. 1009-14.; Herrel L.A., Weiss A.D., Goodman M., et al. Extramammary Paget’s disease in males: survival outcomes in 495 patients, Ann Surg Oncol, 2015, vol. 22(5), pp. 1625-30. doi:10.1245/s10434-014- 4139-y.; Chung P.H., Kampp J.T., Voelzke B.B. Patients’ Experiences with Extramammary Paget Disease: An Online Pilot Study Querying a Patient Support Group, Urology, 2018, vol. 111, pp. 214-219. doi:10.1016/j.urology.2017.08.045.; Tanaka V.D., Sanches J.A., Torezan L., Niwa A.B., Festa Neto C. Mammary and extramammary Paget’s disease: a study of 14 cases and the associated therapeutic difficulties, Clinics (Sao Paulo, Brazil), 2009, vol. 64(6), pp. 599-606. doi:10.1590/s1807- 59322009000600018.; Park S., Grossfeld G.D., McAninch J.W., et al. Extramammary Paget’s disease of the penis and scrotum: excision, reconstruction and evaluation of occult malignancy, J Urol, 2001, vol. 166, pp. 2112-6; discussion 2117. doi:10.1016/S0022-5347(05)65516-4.; Nardelli A.A., Stafinski T., Menon D. Effectiveness of photodynamic therapy for mammary and extra-mammary Paget’s disease: a state of the science review, BMC Dermatol, 2011, vol. 11, pp. 13. doi:10.1186/1471-5945-11-13.; Morris C.R., Hurst E.A. Extramammary Paget’s Disease: A Review of the Literature Part II: Treatment and Prognosis, Dermatol Surg, 2020, vol. 46(3), pp. 305-311. doi:10.1097/DSS.0000000000002240.; Zollo J.D., Zeitouni N.C. The Roswell Park Cancer Institute experience with extramammary Paget’s disease, Br J Dermatol, 2000, vol. 142(1), pp. 59-65.; Haberman H.F., Goodall J., Llewellyn M. Extramammary Paget’s disease, Can Med Assoc J, 1978, vol. 118, pp. 161-162.; Kawatsu T., Miki Y. Triple extramammary Paget’s disease, Arch Dermatol, 1971, vol. 104, pp. 316-319. doi:10.1001/ archderm.1971.04000210090018.; Watring W.G., Roberts J.A., Lagasse L.D., et al. Treatment of recurrent Paget’s disease of the vulva with topical bleomycin, Cancer, 1978, vol. 41, pp. 10-11. doi:10.1002/1097-0142(197801)41:1 3.0.CO;2-G.; Machida H., Moeini A., Roman L.D., et al. Effects of imiquimod on vulvar Paget’s disease: a systematic review of literature, Gynecol Oncol, 2015, vol. 139, pp. 165-171. doi:10.1016/j. ygyno.2015.07.097.; Louis-Sylvestre C., Haddad B., Paniel B.J. Paget’s disease of the vulva: results of different conservative treatments, Eur J Obstet Gynecol Reprod Biol, 2001, vol. 99, pp. 253-255. doi:10.1016/ S0301-2115(01)00394-3.; Choi J.B., Yoon E.S., Yoon D.K., et al. Failure of carbon dioxide laser treatment in three patients with penoscrotal extramammary Paget’s disease, BJU Int, 2001, vol. 88, pp. 297-298. doi:10.1046/j.1464-410x.2001.02326.x.; Филоненко Е.В., Иванова-Радкевич В.И. Фотодинамическая терапия в лечении больных грибовидным микозом // Biomedical Photonics. – 2022. – Т. 11, № 1. – С. 27–36. doi:10.24931/2413–9432–2022–11-1-27-36; Панасейкин Ю.А., Филоненко Е.В., Севрюков Ф.Е., В.Н. Капинус, Полькин В.В., Исаев П.А., Каприн А.Д., Иванов С.А. Возможности фотодинамической терапии при лечении злокачественных опухолей полости рта // Biomedical Photonics. – 2021. – Т. 10, № 3. – С. 32–38. doi:10.24931/2413–9432–2021–10–3–32–38; Гилядова А.В., Романко Ю.С., Ищенко А.А., Самойлова С.В., Ширяев А.А., Алексеева П.М., Эфендиев К.Т., Решетов И.В. Фотодинамическая терапия предраковых заболеваний и рака шейки матки (обзор литературы) // Biomedical Photonics. – 2021. – Т. 10, № 4. – С. 59–67. doi:10.24931/2413–9432–2021–10- 4-59-67; Madan V., Loncaster J., Allan D., Lear J., Sheridan L., Leach C., et al. Extramammary Paget’s disease treated with topical and systemic photodynamic therapy, Photodiagnosis Photodyn. Ther, 2005, vol. 2(4), pp. 309-311.; Shieh S., Dee A.S., Cheney R.T., Frawley N.P., Zeitouni N.C., Oseroff A.R. Photodynamic therapy for the treatment of extramammary Paget’s disease, Br. J. Dermatol, 2002, vol. 146(6), pp. 1000-1005. 29. Wang X.L., Wang H.W., Guo M.X., Xu S.Z. Treatment of skin cancer and pre-cancer using topical ALA-PDT – a single hospital experience, Photodiagnosis Photodyn. Ther, 2008, vol. 5(2), pp. 127-133.; Fontanelli R., Papadia A., Martinelli F., Lorusso D., Grijuela B., Merola M., et al. Photodynamic therapy with M-ALA as non surgical treatment option in patients with primary extramammary Paget’s disease, Gynecol. Oncol, 2013, vol. 130(1), pp. 90-94. 31. Li Q., Gao T., Jiao B., Qi X., Long H.A., Qiao H., et al. Long-term follow-up of in situ extramammary Paget’s disease in Asian skin types IV/V treated with photodynamic therapy, Acta Derm. Venereo Andrettal, 2010, vol. 90(2), pp. 159-164.; Magnano M., Loi C., Bardazzi F., Burtica E.C., Patrizi A. Methyl – aminolevulinic acid photodynamic therapy and topical tretinoin in a patient with vulvar extramammary Paget’s disease, Dermatol. Ther, 2013, vol. 26(2), pp. 170-172.; Raspagliesi F., Fontanelli R., Rossi G., Ditto A., Solima E., Hanozet F., et al. Photodynamic therapy using a methyl ester of 5-aminolevulinic acid in recurrent Paget’s disease of the vulva: a pilot study, Gynecol. Oncol, 2006, vol. 103(2), pp. 581-586.; Runfola M.A., Weber T.K., Rodriguez-Bigas M.A., Dougherty T.J., Petrelli N.J. Photodynamic therapy for residual neoplasms of the perianal skin, Dis. Colon Rectum, 2000, vol. 43(4), pp. 499-502.; Housel J.P., Izikson L., Zeitouni N.C. Noninvasive extramammary Paget’s disease treated with photodynamic therapy: case series from the Roswell Park Cancer Institute, Dermatol. Surg, 2010, vol. 36(11), pp. 1718-1724.; Kitagawa K.H., Bogner P., Zeitouni N.C. Photodynamic therapy with methyl-aminolevulinate for the treatment of double extramammary Paget’s disease, Dermatol. Surg, 2011, vol. 37(7), pp. 1043-1046.; Al Yousef A., Boccara O., Moyal-Barracco M., Zimmermann U., Saiag P. Incomplete efficacy of 5-aminolevulinic acid (5 ALA) photodynamic therapy in the treatment of widespread extramammary Paget’s disease, Photodermatol. Photoimmunol. Photomed, 2012, vol. 28(1), pp. 53-55.; Calzavara-Pinton P.G., Rossi M.T., Sala R. A retrospective analysis of real-life practice of off-label photodynamic therapy using methyl aminolevulinate (MALPDT) in 20 Italian dermatology departments. Part 2: oncologic and infectious indications, Photochem. Photobiol. Sci, 2013, vol. 12(1), pp. 158-165.; Wang D., Wang P., Li C., Zhou Z., Zhang L., Zhang G., Wang X. Efficacy and safety of HpD-PDT for Extramammary Paget’s Disease refractory to conventional therapy: A prospective, open-label and single arm pilot study, Photodiagnosis Photodyn Ther, 2022, vol. 37, 102670. doi:10.1016/j.pdpdt.2021.102670.

  15. 15
    Academic Journal

    Πηγή: Biomedical Photonics; Том 10, № 4 (2021); 4-22 ; 2413-9432 ; 10.24931/2413-9432-2021-10-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/514/357; https://www.pdt-journal.com/jour/article/view/514/373; Filonenko E.V. The history of development of fluorescence diagnosis and photodynamic therapy and their capabilities in oncology//Russian Journal of General Chemistry. – 2015.– Vol. 85 (1). – P. 211–216. doi:10.1134/S1070363215010399; Sokolov V.V., Chissov V. I., Filonenko E.V., Kozlov D.N., Smirnov V.V. Photodynamic therapy of cancer with the photosensitizer PHOTOGEM//Proceedings of SPIE – The International Society for Optical Engineering.– 1995.– Vol. 2325.– P. 367–374. doi:10.1117/12.199169; Sokolov V.V., Chissov V.I., Filonenko E.V., KozlovD.N., Smirnov V.V. First clinical results with a new drug for PDT//Proceedings of SPIE – The International Society for Optical Engineering.– 1995.– Vol. 2325.– P. 364–366. doi:10.1117/12.199168; Sokolov V.V., Chissov V. I., Yakubovskya R. I., Smirnov V.V., Zhitkova M.B. Photodynamic therapy (PDT) of malignant tumors by photosensitzer photosens: results of 45 clinical cases//Proceedings of SPIE – The International Society for Optical Engineering. – 1996.– Vol. 2625.– P. 281–287.; Панова О.С., Дубенский В.В., Дубенский В.В., Петунина В.В., Бейманова М.А., Санчес Э.А., Гельфонд М.Л., Шилов Б.В., Белхароева Р.Х. Фотодинамическая репаративная регенерация кожи с применением наружного геля-фотосенсибилизатора на основе хлорина е6//Вiomedical photonics.– 2021.– Т. 10, № 3.– С. 4–11. doi.org/10.24931/2413–9432–2021–10–3-4–11; Цеймах А. Е., Лазарев А.Ф., Секержинская Е.Л., Куртуков В.А., Мищенко А.Н., Теплухин В.Н., Шойхет Я.Н. Паллиативное лечение с применением фотодинамической терапии пациентов со злокачественными новообразованиями панкреатобилиарной зоны, осложненными механической желтухой//Биомедицинская фотоника. – 2020.– Т. 9, № 1.– С. 4–12. doi:10.24931/2413–9432–2020–9-1–4-12; Церковский Д.А., Петровская Н.А., Мазуренко А.Н. Фотодинамическая терапия пациентов с внутрикожными метастазами диссеминированной меланомы кожи//Вiomedical photonics.– 2019. – Т. 8, № 1. – С. 24–28. doi.org/10.24931/2413–9432–2019–8-1–24–28; Туманина А.Н., Полежаев А.А., Апанасевич В.А., Гурина Л.И., Волков М.В., Тарасенко А.Ю., Филоненко Е.В. Опыт применения фотодинамической терапии в лечении рака пищевода//Biomedical Photonics.– 2019.– Т. 8, № 2.– С. 19–24. doi.org/10.24931/2413–9432–2019–8-2–19–24; Церковский Д.А., Протопович Е.Л., Козловский Д.И., Суслова В.А. Противоопухолевая эффективность контактной лучевой терапии в комбинации с фотосенсибилизатором хлоринового ряда в эксперименте//Biomedical Photonics.– 2021. – Т. 10, № 2.– С. 25–33. doi.org/10.24931/2413–9432–2021–10–2-25–33; Pikin O., Filonenko E., Mironenko D., Vursol D., Amiraliev A. Fluorescence thoracoscopy in the detection of pleural malignancy//European Journal of Cardio-thoracic Surgery. – 2012. – Vol. 41 (3).– P. 649–652. doi:10.1093/ejcts/ezr086; Zharkova N.N., Kozlov D.N., Smirnov V.V., Galpern M.G., Vorozhtsov G.N. Fluorescence observations of patients in the course of photodynamic therapy of cancer with the photosensitizer PHOTOSENS//Proceedings of SPIE – The International Society for Optical Engineering. – 1995.– Vol. 2325. – P. 400–403.; Sokolov V.V., Filonenko E.V., Telegina L.V., Boulgakova N.N., Smirnov V.V. Combination of fluorescence imaging and local spectrophotometry in fluorescence diagnostics of early cancer of larynx and bronchi//Quantum Electronics.– 2002. – Vol. 32 (11). – P. 963–969. doi:10.1070/QE2002v032n11ABEH002329; Sokolov V.V., Chissov V. I., Filonenko E.V., Kozlov D.N., Smirnov V.V. Clinical fluorescence diagnostics in the course of photodynamic therapy of cancer with the photosensitizer PHOTOGEM//Proceedings of SPIE – The International Society for Optical Engineering. – 1995.– Vol. 2325. – P. 375–380.; Русаков И. Г., Теплов А.А., Ульянов Р.В., Филоненко Е.В. Флуоресцентная цистоскопия у больных немышечно-инвазивным раком мочевого пузыря//Biomedical Photonics.– 2015.– Т. 4, № 3.– С. 29–35. doi.org/10.24931/2413–9432–2015–4-3–29–35; Филоненко Е.В., Соколов В.В., Мененков В.Д., Крылова Г.П. Фотодинамическая терапия начального рака полых органов//Фотодинамическая терапия и фотодиагностика.– 2015.– Т. 4, № 1.– С. 22–25. doi.org/10.24931/2413–9432–2015– 4-1–22–25; Фармацевтический вестник. – 2014.– № 37. – С. 782.

  16. 16
    Academic Journal

    Πηγή: Biomedical Photonics; Том 10, № 2 (2021); 42-50 ; 2413-9432 ; 10.24931/2413-9432-2021-10-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/490/347; https://www.pdt-journal.com/jour/article/view/490/356; Sokolov V.V., Chissov V.I., Filonenko E.V. et al. Photodynamic therapy of cancer with the photosensitizer PHOTOGEM // Proceedings of SPIE. - The International Society for Optical Engineering. - 1995 - Vol. 2325 - P. 367-374.; Filonenko E.V. The history of development of fluorescence diagnosis and photodynamic therapy and their capabilities in oncology // Russian Journal of General Chemistry. -2015. - Vol. 85(1). - P. 211-216.; Туманина А.Н., Полежаев А.А., Апанасевич В.А., Гурина Л.И., Волков М.В., Тарасенко А.Ю., Филоненко Е.В. Опыт применения фотодинамической терапии в лечении рака пищевода // Biomedical Photonics. - 2019. - Т. 8(2). - С. 19-24. https://doi.org/10.24931/2413-9432-2019-8-2-19-24; Sokolov V. V., Chissov V. I., Filonenko E. V. et al. First clinical results with a new drug for PDT//Proceedings of SPIE -The International Society for Optical Engineering. - 1995 - Vol. 2325. - P. 364-366. doi.org/10.1117/12.199168; Ivanova-Radkevich V.I., Negrimovskii V.M., Barkanova S.V. et al. Biokinetic investigation of the photodynamic activity of new photosensitizers // Pharmaceutical Chemistry Journal. - 2009. - Vol. 43(5). - Р. 239-241. DOI:10.1007/s11094-009-0286-z; Сидоров Д.В., Гришин Н.А., Ложкин М.В., Троицкий А.А., Мошуров Р.И., Быкасов С.А., Урлова А.Н., Филоненко Е.В. Интраоперационная фотодинамическая терапия и гипертермическая внутрибрюшная химиотерапия при циторедуктивном хирургическом лечении больных диссеминированной муцинозной карциномой аппендикса // Biomedical Photonics. - 2020. - Т. 9 (4). - С. 23-30. https://doi.org/10.24931/2413-9432-2020-9-4-23-30; Braunstein S., Nakamura J.L. Radiotherapy-induced malignancies: review of clinical features, pathobiology, and evolving approaches for mitigating risk // Front Oncol. - 2013. - Vol. 3. - Р.73.; Deutsch A., Balagula Y., McLellan B.N. Anticancer therapies associated with secondary cutaneous malignancies: A review of the literature // J Am Acad Dermatol. - 2020. - Vol. 83(5). - Р. 1425-1433. doi:10.1016/j.jaad.2020.04.074; Cahan W.G., Woodard H.Q., Higinbotham N.L. et al. Sarcoma arising in irradiated bone: report of eleven cases. 1948 // Cancer. - 1998. - Vol. 82(1). - Р. 8-34.; Meibodi N.T., Maleki M., Javidi Z., Nahidi Y. Clinicopathological evaluation of radiation induced basal cell carcinoma // Indian J Dermatol. - 2008. - Vol. 53(3). - Р. 137-139.; Friedman D. L., Whitton J., Leisenring W., Mertens A.C., Hammond S., Stovall M. et al. Subsequent Neoplasms in 5-Year Survivors of Childhood Cancer: The Childhood Cancer Survivor Study // JNCI: Journal of the National Cancer Institute. - 2010. - Vol. 102(14). - P. 1083-1095. doi:10.1093/jnci/djq238; Neglia J. P., Meadows A. T., Robison L. L., Kim T. H., Newton W. A., Ruymann F. B. et al. Second neoplasms after acute lymphoblastic leukemia in childhood // N. Engl. J. Med. - 1991. - Vol. 325. - P. 1330-1336. doi:10.1056/NEJM199111073251902; Armstrong G.T., Liu W., Leisenring W., Yasui Y., Hammond S., Bhatia S. et al. Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: a report from the childhood cancer survivor study // J. Clin. Oncol. - 2011. - Vol. 29. - P. 3056-3064. doi:10.1200/JCO.2011.34.6585; Travis L.B., Hill D.A., Dores G.M., Gospodarowicz M., van Leeuwen F.E., Holowaty E., et al. Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease // JAMA. 2003. - Vol. 290. - P. 465-475. doi:10.1001/jama.290.4.465; Maalej M., Frikha H., Kochbati L., Bouaouina N. et al. Radioinduced malignancies of the scalp about 98 patients with 150 lesions and literature review // Cancer Radiother. - 2004. - Vol. 8. - Р. 81-87; Ekmekçi P., Bostanci S., Anadolu R. et al. Multiple basal cell carcinomas developed after radiation therapy for tinea capitis: A case report // Dermatol Surg. - 2001. - Vol. 27. - Р. 667-669.; Handa Y., Miwa S., Yamada M., Ono H. et al. Multiple pigmented basal cell carcinomas arising in the normal appearing skin after radiotherapy for carcinoma of the cervix // Dermatol Surg. - 2003. - Vol. 29. - Р. 1233-1235.; Misago N., Ogusu Y., Narisawa Y. Keloidal basal cell carcinoma after radiation therapy // Eur J Dermatol. - 2004. - Vol. 14. - Р. 182-185.; Li C., Athar M. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis // Radiat Res. - 2016. - Vol. 185(3). - Р. 217-218. doi:10.1667/RR4284.S1.; Shore R.E., Moseson M., Xue X., Tse Y. et al. Skin cancer after X-ray treatment for scalp ringworm // Radiat Res. - 2002. - Vol. 157. - Р. 410-418.; Zargari O. Radiation-induced basal cell carcinoma // Dermatol Pract Concept. - 2015. - Vol. 5. - Р. 109-112.; Hassanpour S.E., Kalantar-Hormozi A., Motamed S. et al. Basal cell carcinoma of scalp in patients with history of childhood therapeutic radiation: a retrospective study and comparison to nonirradiated patients // Ann Plast Surg. - 2006. - Vol. 57. - Р. 509-512.; Boaventura P, Pereira D, Mendes A, Batista R, da Silva AF, Guimaraes I, et al. Mitochondrial D310 D-Loop instability and histological subtypes in radiation-induced cutaneous basal cell carcinomas // J Dermatol Sci. - 2014. - Vol. 73. - Р. 31-39.; Albert R.E., Omran A.R., Brauer E.W. et al. Follow-up study of patients treated by x-ray epilation for tinea capitis. II. Results of clinical and laboratory examinations // Arch Environ Health. - 1968. - Vol. 17. - Р. 919-934; Shore R.E., Albert R.E., Pasternack B.S. Follow-up study of patients treated by X-ray epilation for Tinea capitis; resurvey of post-treatment illness and mortality experience // Arch Environ Health. - 1976. - Vol. 31. - Р. 21-8.; Ron E., Modan E.B., Preston D. et al. Radiation-induced skin carcinomas of the head and neck // Radiat Res. - 1991. - Vol. 125. - Р. 318-320.; Mseddi M., Bouassida S., Marrekchi S., et al. Basal cell carcinoma of the scalp after radiation therapy for tinea capitis: 33 patients // Cancer Radiother. - 2004. - Vol. 8. - Р. 270-273.; Watt T.C., Inskip P.D., Stratton K. et al. Radiation-related risk of basal cell carcinoma: a report from the Childhood Cancer Survivor Study // J Natl Cancer Inst. - 2012. - Vol. 104. - Р. 1240-1250.; Leisenring W., Friedman D.L., Flowers M.E. et al. Nonmelanoma skin and mucosal cancers after hematopoietic cell transplantation // J Clin Oncol. - 2006. - Vol. 24. - Р. 1119-1126.; Schwartz J.L., Kopecky K.J., Mathes R.W. et al. Basal cell skin cancer after total-body irradiation and hematopoietic cell transplantation // Radiat Res. - 2009. - Vol. 171. - Р. 155-163.

  17. 17
  18. 18
  19. 19
  20. 20