Εμφανίζονται 1 - 20 Αποτελέσματα από 20 για την αναζήτηση '"18F-фтордезоксиглюкоза"', χρόνος αναζήτησης: 0,98δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Head and Neck Tumors; Vol 10, No 4 (2020); 16-24 ; Опухоли головы и шеи; Vol 10, No 4 (2020); 16-24 ; 2411-4634 ; 2222-1468

    Περιγραφή αρχείου: application/pdf

  2. 2
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 18, № 4 (2019); 67-77 ; Сибирский онкологический журнал; Том 18, № 4 (2019); 67-77 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1143/654; American Cancer Society. Cancer facts and figures. Atlanta, Georgia, 2008. 72.; Алиев В.А., Артамонова Е.В., Барсуков Ю.А., Глебовская В.В., Гордеев С.С., Карачун А.М., Личиницер М.Р., Расулов А.О., Сагайдак И.В., Сидоров Д.В., Ткачев С.И., Трякин А.А., Федянин М.Ю., Шелыгин Ю.А. Клинические рекомендации по диагностике и лечению больных раком прямой кишки. М., 2014. 15.; Портной Л.М., Вятчанин О.В. Лучевая диагностика опухолей четырех локализаций (легкого, молочной железы, желудка, толстой кишки) с организационно-методических позиций практического здравоохранения Российской Федерации. Вестник рентгенологии и радиологии. 2005; 4: 4–20.; Kluetz P.G., Meltzer C.C., Villemagne V.L., Kinahan P.E., Chander S., Martinelli M.A., Townsend D.W. Combined PET-CT imaging in oncology: Impact on patient management. Clin Positron Imaging. 2000; 3(6): 223–230.; Усова А.В., Фролова И.Г., Афанасьев С.Г., Тарасова А.С. Возможности МРТ в диагностике и оценке эффективности лечения рака прямой кишки. Сибирский онкологический журнал. 2012; 5: 74–80.; Meta J., Seltzer M., Schiepers C., Silverman D.H., Ariannejad M., Gambhir S.S., Phelps M.E., Valk P., Czernin J. Impact of 18F-FDG PET on managing patients with colorectal cancer: the referring physician’s perspective. J Nucl Med. 2001 Apr; 42(4): 586–90.; Ruhlmann J., Oehr P., Biersack H.J. PET in Oncology. Berlin; Heidelberg: Springer-Verlag, 2003. 11.; Delbeke D. Oncological application of FDG imaging. J Nucl. Med. 1999; 40(7): 1706–1716.; Goldberg H.I., Margulis A.R. Gastrointestinal radiology in the United States: an overview of the past 50 years. Radiology. 2000; 216(1): 1–7. doi:10.1148/radiology.216.1.r00jl311.; Kinkel K., Lu Y., Both M., Warren R.S., Thoeni R.F. Detection of hepatic metastases from cancer of the gastrointestinal tract by using non invasive imaging methods (US, CT, MRI imaging, PET): a meta-analysis. Ibid. 2002; 224(6): 748–756.; Stokkel M.P., Draisma A., Pauwels E.K. Positron emission tomography with 2-[18F]-fluoro-2-deoxy-D-glucose in oncology. Part IIIb: Therapy response monitoring in colorectal and lung tumours, head and neck cancer, hepatocellular carcinoma and sarcoma. J Cancer Res Clin Oncol. 2001 May; 127(5): 278–85.; Osman M.M., Cohade C., Nakamoto Y., Marshall L.T., Leal J.P., Wahl R.L. Clinically signifi cant inaccurate localization of lesions with PET/ CT: frequency in 300 patients. J Nucl Med. 2003 Feb; 44(2): 240–3.; Coleman R.E. Clinical PET in oncology. Clin. Posi. Imaging. 1998; 1(2): 15–30. doi:10.1016/S1095-0397(97)00004-6.; Wahl R.L., Quint L.E., Cieslak R.D., Aisen A.M., Koeppe R.A., Meyer C.R. Anatometabolic tumor imaging: fusion of FDG PET with CT and MRI to localize foci of increased activity. J Nucl Med. 1993 Jul; 34(7): 1190–7.; Kostenikov N.A., Ryzhkova D.V., Stanzhevsky A.A., Tlostanova M.S., Balabanova A., Plotkin M., Sukhov V., Zaplatnikov K. Positron emission tomography. Springer-Verlag Berlin, 2013. doi:10.1007/978-3-642-21120-1.; Gontier E., Fourme E., Wartski M., Blondet C., Bonardel G., Le Stanc E., Mantzarides M., Foehrenbach H., Pecking A.P., Alberini J.L. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging. 2008 Jan; 35(1): 95–9.; Gauthé M., Richard-Molard M., Cacheux W., Michel P., Jouve J.L., Mitry E., Alberini J.L., Lièvre A.; Fédération Francophone de Cancérologie Digestive (FFCD). Role of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography in gastrointestinal cancers. Dig Liver Dis. 2015 Jun; 47(6): 443–54. doi:10.1016/j.dld.2015.02.005.; Ismaili N. Treatment of colorectal liver metastases. World J Surg Oncol. 2011 Nov 24; 9: 154. doi:10.1186/1477-7819-9-154.; Maffione A.M., Lopci E., Bluemel C., Giammarile F., Herrmann K., Rubello D. Diagnostic accuracy and impact on management of 18F-FDG PET and PET/CT in colorectal liver metastasis: a meta-analysis and systematic review. Eur J Nucl Med Mol Imaging. 2015 Jan; 42(1): 152–63. doi:10.1007/s00259-014-2930-4.; Bar-Shalom R., Yefremov N., Guralnik L., Gaitini D., Frenkel A., Kuten A., Altman H., Keidar Z., Israel O. Clinical performance of PET/CT in the evaluation of cancer: Additional value for diagnostic imaging and patient management. J Nucl Med. 2003 Aug; 44(8): 1200–9. 21. Roman C.D., Martin W.H., Delbeke D. Incremental value of fusion imaging with integrated PET-CT in oncology. Clin Nucl Med 2005; 30: 470–477.; Cohade C., Osman M., Leal J., Wahl R.L. Direct comparison of FDG PET and PET-CT imaging in colorectal carcinoma. J Nucl Med. 2003 Nov; 44(11): 1797–803.; Selzner M., Hany T.F., Wildbrett P., McCormack L., Kadry Z., Clavien P.A. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg. 2004 Dec; 240(6): 1027–34.; Soyka J.D., Veit-Haibach P., Strobel K., Breitenstein S., Tschopp A., Mende K.A., Perez Lago M., Hany T.F. Staging pathways in recurrent colorectal carcinoma: Is contrast-enhanced 18F-FDG PET/CT the diagnostic tool of choice? J Nucl Med. 2008 Mar; 49(3): 354–61. doi:10.2967/jnumed.107.048249.; Tateishi U., Maeda T., Morimoto T., Miyake M., Arai Y., Kim E.E. Non-enhanced CT versus contrastenhanced CT in integrated PET/CT studies for nodal staging of rectal cancer. Eur J Nucl Med Mol Imaging. 2007; 34: 1627–1634.; Huebner R.H., Park K.C., Shepherd J.E., Schwimmer J., Czernin J., Phelps M.E., Gambhir S.S. A metaanalysis of the literature for wholebody FDG PET detection of colorectal cancer. J Nucl Med. 2000; 41: 1177–1189.; Gambhir S.S., Czernin J., Schwimmer J., Silverman D.H., Coleman R.E., Phelps M.E. A tabulated review of the literature. J Nucl Med. 2001; 42 (suppl): 9S–12S.; Ruers T.J., Langenhoff B.S., Neeleman N., Jager G.J., Strijk S., Wobbes T., Corstens F.H.M., Oyen W.J.G. Value of positron emission tomography with [F-18] fluorodeoxyglucose in patients with colorectal liver metastases: A prospective study. J Clin Oncol 2002; 20: 388–395.; Wiering B., Krabbe P.F., Jager G.J., Oyen W.J., Ruers T.J. The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer 2005; 15(104): 2658–2670.; Scott A.M., Gunawardana D.H., Kelley B., Stuckey J.G., Byrne A.J., Ramshaw J.E., Fulham M.J. PET changes management and improves prognostic stratification in patients with recurrent colorectal cancer: Results of a multicenter prospective study. J Nucl Med. 2008 Sep; 49(9): 1451–7. doi:10.2967/jnumed.108.051615.; Strasberg S.M., Dehdashti F., Siegel B.A., Drebin J.A., Linehan D. Survival of patients evaluated by FDG PET before hepatic resection for metastatic colorectal carcinoma: A prospective database study. Ann Surg 2001; 233: 320–321. doi:10.1097/00000658-200103000-00001.; Fernandez F.G., Drebin J.A., Linehan D.C., Dehdashti F., Siegel B.A., Strasberg S.M. Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann Surg 2004; 240: 438–447; discussion 447–450. doi:10.1097/01.sla.0000138076.72547.b1.; Wiering B., Krabbe P.F., Dekker H.M., Oyen W.J., Ruers T.J. The role of FDG-PET in the selection of patients with colorectal liver metastases. Ann Surg Oncol 2007; 14: 771–779. doi:10.1245/s10434-006-9013-0.; Venook A. Critical evaluation of current treatments in metastatic colorectal cancer. Oncologist 2005; 10: 250–261. doi:10.1634/theoncologist.10-4-250.; Findlay M., Young H., Cunningham D., Iveson A., Cronin B., Hickish T., Pratt B., Husband J., Flower M., Ott R. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: Correlation with tumor response to fluorouracil. J Clin Oncol. 1996; 14: 700–8. doi:10.1200/JCO.1996.14.3.700.; Akhurst T., Kates T.J., Mazumdar M., Yeung H., Riedel E.R., Burt B.M., Blumgart L., Jarnagin W., Larson S.M., Fong Y. Recent chemotherapy reduces the sensitivity of [18F]fluorodeoxyglucose positron emission tomography in the detection of colorectal metastases. J Clin Oncol. 2005 Dec 1; 23(34): 8713–6. doi:10.1200/JCO.2005.04.4222; Takahashi S., Kuroki Y., Nasu K., Nawano S., Konishi M., Nakagohri T., Gotohda N., Saito N., Kinoshita T. Positron emission tomography with F-18 fluorodeoxyglucose in evaluating colorectal hepatic metastasis down-staged by chemotherapy. Anticancer Res. 2006 Nov-Dec; 26(6C): 4705–11.; Carnaghi C., Tronconi M.C., Rimassa L., Tondulli L., Zuradelli M., Rodari M., Doci R., Luttmann F., Torzilli G., Rubello D., Al-Nahhas A., Santoro A., Chiti A. Utility of 18F-FDG PET and contrastenhanced CT scan in the assessment of residual liver metastasis from colorectal cancer following adjuvant chemotherapy. Nucl Med Rev Cent East Eur. 2007; 10(1): 12–5.; Lubezky N., Metser U., Geva R., Nakache R., Shmueli E., Klausner J.M., Even-Sapir E., Figer A., BenHaim M. The role and limitations of 18-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) scan and computerized tomography (CT) in restaging patients with hepatic colorectal metastases following neoadjuvant chemotherapy: Comparison with operative and pathological findings. J Gastrointest Surg. 2007 Apr; 11(4): 472–8. doi:10.1007/s11605-006-0032-8.; Tan M.C., Linehan D.C., Hawkins W.G., Siegel B.A., Strasberg S.M. Chemotherapy-induced normalization of FDG uptake by colorectal liver metastases does not usually indicate complete pathologic response. J Gastrointest Surg. 2007 Sep; 11(9): 1112–9. doi:10.1007/s11605-007-0218-8.; Афанасьев С.Г., Старцева Ж.А., Тарасова А.С., Усова А.В., Самцов Е.Н. Результаты комбинированного лечения рака прямой кишки с применением пролонгированной предоперационной химиолучевой терапии. Сибирский онкологический журнал. 2012; 6: 5–12.; Anderson C., Koshy M., Staley C., Esiashvili N., Ghavidel S., Fowler Z., Fox T., Esteves F., Landry J., Godette K. PET-CT fusion in radiation management of patients with anorectal tumors. Int J Radiat Oncol Biol Phys. 2007 Sep 1; 69(1): 155–62. doi:10.1016/j.ijrobp.2007.02.055.; Patel D.A., Chang S.T., Goodman K.A., Quon A., Thorndyke B., Gambhir S.S., McMillan A., Loo B.W.Jr., Koong A.C. Impact of integrated PET/ CT on variability of target volume delineation in rectal cancer. Technol Cancer Res Treat. 2007 Feb; 6(1): 31–6. doi:10.1177/153303460700600105.; Moore H.G., Akhurst T., Larson S.M., Minsky B.D., Mazumdar M., Guillem J.G. A case controlled study of 18-fluorodeoxyglucose positron emission tomography in the detection of pelvic recurrence in previously irradiated rectal cancer patients. J Am Coll Surg 2003; 197: 22–28. doi:10.1016/S1072-7515(03)00337-5.; Guillem J.G., Puig-La Calle J.Jr., Akhurst T., Tickoo S., Ruo L., Minsky B.D., Gollub M.J., Klimstra D.S., Mazumdar M., Paty P.B., Macapinlac H., Yeung H., Saltz L., Finn R.D., Erdi Y., Humm J., Cohen A.M., Larson S. Colorectal Cancer 291 Prospective assessment of primary rectal cancer response to preoperative radiation and chemotherapy using 18- Fluorodeoxyglucose positron emission tomography. Dis Colon Rectum. 2000 Jan; 43(1): 18–24.; Guillem J.G., Moore H.G., Akhurst T., Klimstra D., Ruo L., Mazumdar M., Minsky B., Saltz L., Wong W., Larson S. Sequential preoperative fluorodeoxyglucoise-Positron emission tomography assessment of response to preoperative chemoradiation: A means for determining longterm outcomes of rectal cancer. J Am Coll Surg 2004; 199: 1–7. DOI:10.1016/j. jamcollsurg.2004.02.024.; Maas M., Nelemans P.J., Valentini V., Das P., Rödel C., Kuo L.J., Calvo F.A., García-Aguilar J., Glynne-Jones R., Haustermans K., Mohiuddin M., Pucciarelli S., Small W.Jr., Suárez J., Theodoropoulos G., Biondo S., Beets-Tan R.G., Beets G.L. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010 Sep; 11(9): 835–44. doi:10.1016/S1470-2045(10)70172-8.; Maffione A.M., Chondrogiannis S., Capirci C., Galeotti F., Fornasiero A., Crepaldi G., Grassetto G., Rampin L., Marzola M.C., Rubello D. Early prediction of response by 18F-FDG PET/CT during preoperative therapy in locally advanced rectal cancer: a systematic review. Eur J Surg Oncol. 2014 Oct; 40(10): 1186–94. doi:10.1016/j.ejso.2014.06.005.; Maffione A.M., Marzola M.C., Capirci C., Colletti P.M., Rubello D. Value of 18F-FDG PET for Predicting Response to Neoadjuvant Therapy in Rectal Cancer: Systematic Review and Meta-Analysis. Am J Roentgenol. 2015 Jun; 204(6): 1261–8. doi:10.2214/AJR.14.13210.; Fendler W.P., Philippe Tiega D.B., Ilhan H., Paprottka P.M., Heinemann V., Jakobs T.F., Bartenstein P., Hacker M., Haug A.R. Validation of several SUV-based parameters derived from 18F-FDG PET for prediction of survival after SIRT of hepatic metastases from colorectal cancer. J Nucl Med. 2013 Aug; 54(8): 1202–8. doi:10.2967/jnumed.112.116426.; Guillem J.G., Ruby J.A., Leibold T., Akhurst T.J., Yeung H.W., Gollub M.J., Ginsberg M.S., Shia J., Suriawinata A.A., Riedel E.R., Mazumdar M., Saltz L.B., Minsky B.D., Nash G.M., Paty P.B., Temple L.K., Weiser M.R., Larson S.M. Neither FDG-PET Nor CT can distinguish between a pathological complete response and an incomplete response after neoadjuvant chemoradiation in locally advanced rectal cancer: a prospective study. Ann Surg. 2013 Aug; 258(2): 289–95. doi:10.1097/ SLA.0b013e318277b625.; Maas M., Rutten I.J., Nelemans P.J., Lambregts D.M., Cappendijk V.C., Beets G.L., Beets-Tan R.G. What is the most accurate whole-body imaging modality for assessment of local and distant recurrent disease in colorectal cancer? A meta-analysis: imaging for recurrent colorectal cancer. Eur J Nucl Med Mol Imaging. 2011 Aug; 38(8): 1560–71. doi:10.1007/ s00259-011-1785-1.; Lu Y.Y., Chen J.H., Chien C.R., Chen W.T.L., Tsai S.C., Lin W.Y., Kao C.H. Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Colorectal Dis, 2013; 28: 1039–1047.; Sanli Y., Kuyumcu S., Ozkan Z.G., Kilic L., Balik E., Turkmen C., Has D., Isik G., Asoglu O., Kapran Y., Adalet I. The utility of FDG-PET/ CT as an effective tool for detecting recurrent colorectal cancer regardless of serum CEA levels. Ann Nucl Med. 2012 Aug; 26(7): 551–8. doi:10.1007/s12149-012-0609-0.; Even-Sapir E., Parag Y., Lerman H., Gutman M., Levine C., Rabau M., Metser U. Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology. 2004; 232: 815–822.; Langenhoff B.S., Oyen W.J., Jager G.J., Strijk S.P., Wobbes T., Corstens F.H., Ruers T.J. Efficacy of fluorine18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol. 2002 Nov 15; 20(22): 4453–8. doi:10.1200/JCO.2002.12.134.; Афанасьев С.Г., Тузиков С.А. Нерезектабельные опухоли печени (обзор литературы). Сибирский онкологический журнал. 2006; 1: 49–54. [Afanasyev S.G., Tuzikov S.A. Inoperable liver tumors (literature review). Siberian Journal of Oncology. 2006; 1: 49–54. (in Russian)].; Lin M., Shon I.H., Wilson R., D’Amours S.K., Schlaphoff G., Lin P. Treatment response in liver metastases following 90Y SIR-spheres: An evaluation with PET. Hepatogastroenterology. 2007 Apr-May; 54(75): 910–2.; Wong C.Y., Salem R., Raman S., Gates V.L., Dworkin H.J. Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging. 2002 Jun; 29(6): 815–20. doi:10.1007/s00259- 002-0787-4.; Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д., Чойнзонов Е.Л. Ядерная медицина в диагностике и адресной терапии злокачественных новообразований. Бюллетень сибирской медицины. 2018; 1(17): 220–231.; Зельчан Р.В., Медведева А.А., Синилкин И.Г., Брагина О.Д., Чернов В.И. Диагностические радиофармацевтические препараты на основе производных глюкозы в современной онкологической практике. Сибирский онкологический журнал. 2018; 2(17): 71–81. doi:10.21294/1814-4861-2018-17-2-71-81.; Чернов В.И., Дудникова Е.А., Гольдберг В.Е., Кравчук Т.Л., Данилова А.В., Зельчан Р.В., Медведева А.А., Синилкин И.Г., Брагина О.Д., Попова Н.О., Гольдберг А.В. Позитронная эмиссионная томография в диагностике и мониторинге лимфопролиферативных заболеваний. Медицинская радиология и радиационная безопасность. 2018; 6(63): 41–50.; Stasyuk E.S., Skuridin V.S., Ilina E.A., Rogov A.S., Nesterov E.A., Sadkin V.L., Larionova L.A., Varlamova N.V., Zelchan R.V. Development new radiopharmaceutical based on 5-thio-D-glucose labeled technetium99m. IOP Conference Series: Materials Science and Engineering 8. VIII International Scientific Conference «Issues of Physics and Technology in Science, Industry and Medicine», 2016. 012044.; Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д., Скуридин В.С. Опыт разработки инновационных радиофармпрепаратов в Томском НИИ онкологии. Сибирский онкологический журнал. 2015; S2: 45–47.; Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д. Разработка радиофармпрепаратов для радионуклидной диагностики в онкологии. Медицинская визуализация. 2016; 2: 63–66.; Зельчан Р.В., Медведева А.А., Брагина О.Д., Синилкин И.Г., Чернов В.И., Стасюк Е.С., Тагирова Е.А., Скуридин В.С. Изучение общей острой токсичности нового радиофармпрепарата 99mTc-1-тио-Dглюкоза в эксперименте. Молекулярная медицина. 2019; 1(17): 58–64.; Zeltchan R., Medvedeva A., Sinilkin I., Chernov V., Stasyuk E., Rogov A., Skuridin V. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose. AIP Publishing, 2016; 1760(1).; Zeltchan R., Medvedeva A., Sinilkin I., Bragina O., Chernov V., Stasyuk E., Dergilev A. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conference Series: Materials Science and Engineering. 2016; 012054.; Зельчан Р.В., Медведева А.А., Синилкин И.Г., Брагина О.Д., Чернов В.И., Стасюк Е.С., Ильина Е.А., Скуридин В.С. Изучение функциональной пригодности туморотропного радиофармпрепарата 99mTс-1-ТИО-6-глюкоза в эксперименте. Молекулярная медицина. 2018; 3(16): 54–57.; Zeltchan R., Medvedeva A., Sinilkin I., Chernov V., Bragina O., Stasyuk E., Rogov A., Il'Ina E., Larionova L., Skuridin V., Dergilev A. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conference Series: Materials Science and Engineering 8. VIII International Scientific Conference «Issues of Physics and Technology in Science, Industry and Medicine». 2016. 012054.; Чернов В.И., Дудникова Е.А., Зельчан Р.В., Кравчук Т.Л., Данилова А.В., Медведева А.А., Синилкин И.Г., Брагина О.Д., Гольдберг В.Е., Гольдберг А.В., Фролова И.Г. Однофотонная эмиссионная компьютерная томография с 99mtc-1-тио-d-глюкозой в диагностике и стадировании злокачественных лимфом: первый опыт использования. Сибирский онкологический журнал. 2018; 17(4): 81–87. Doi:10.21294/1814-4861-2018-17-4-81-87.; https://www.siboncoj.ru/jour/article/view/1143

  3. 3
    Academic Journal

    Πηγή: Cancer Urology; Том 15, № 4 (2019); 113-119 ; Онкоурология; Том 15, № 4 (2019); 113-119 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2019-15-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/970/903; https://oncourology.abvpress.ru/oncur/article/view/970/1147; Бельцевич Д.Г., Бохян В.Ю., Горбунова В.А. и др. Клинические рекомендации по лечению рака коры надпочечников. М., 2014.; Мельниченко Г.А., Бельцевич Д.Г., Кузнецов Н.С., Райхман А.О. Клинические рекомендации по диагностике и лечению адренокортикального рака. Общественная организация «Российская ассоциация эндокринологов». М., 2015.; Dackiw A.P., Lee J.E., Gagel R.F., Evans D.B. Adrenal cortical carcinoma. World J Surg 2001;25(7):914–26.; Ng L., Libertino J.M. Adrenocortical carcinoma: diagnosis, evaluation and treatment. J Urol 2003;169(1):5–11 DOI:10.1097/01.ju.0000030148.59051.35.; Libe R. Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment. Front Cell Dev Biol 2015;3:45. DOI:10.3389/fcell.2015.00045.; Leboulleux S., Dromain C., Bonniaud G. et al. Diagnostic and prognostic value of 18fluorodeoxyglucose positron emission tomography in adrenocortical carcinoma: a prospective comparison with computed tomography. J Clin Endocrinol Metab 2006;91(3):920–5. DOI:10.1210/jc.20051540.; Ansquer C., Scigliano S., Mirallie E. et al. 18F-FDG PET/CT in the characterization and surgical decision concerning adrenal masses: a prospective multicentre evaluation. Eur J Nucl Med Mol Imaging 2010;37(9):1669–78. DOI:10.1007/s00259-010-1471-8.; Blake M., Prakash P., Cronin С. PET/CT for Adrenal Assessment. Am J Roentgenology 2010;195(2):91–5. DOI:10.2214/AJR.09.3845.; NCCN Clinical Practice Guidelines in Oncology, Neuroendocrine tumor. Version 1.2014.; Nunes M.L., Rault A., Teynie J. et al. 18F-FDG PET for the identification of adrenocortical carcinomas among indeterminate adrenaltumors at computed tomography scanning. World J Surg 2010;34(7):1506–10. DOI:10.1007/s00268-010-0576-3.; Groussin L., Bonardel G., Silvéra S. et al. 18F-Fluorodeoxyglucose positron emission tomography for the diagnosis of adrenocorticaltumors: a prospective study in 77 operated patients. J Clin Endocrinol Metab 2009;94(5):1713–22. DOI:10.1210/jc.2008-2302.; Paladino N.C., Guérin C., Lowery A. et al. Characterization of adrenocortical tumors by 18F-FDG PET/CT: Does steroid hormone hypersecretion status modify the uptake pattern? Surg Oncol 2018;27(2): 231–5. DOI:10.1016/j.suronc.2018.04.003.; https://oncourology.abvpress.ru/oncur/article/view/970

  4. 4
    Academic Journal

    Πηγή: Surgery and Oncology; Том 9, № 2 (2019); 11-15 ; Хирургия и онкология; Том 9, № 2 (2019); 11-15 ; 2949-5857 ; 10.17650/2220-3478-2019-9-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.onco-surgery.info/jour/article/view/286/239; Kitajima K., Murakami K., Yamasaki E. et al. Performance of integrated FDG PET/contrast-enhanced CT in the diagnosis of recurrent colorectal cancer: comparison with integrated FDG PET/non-contrast-enhanced CT and enhanced CT. Eur J Nucl Med Mol Imaging 2009;36(9):1388—96. PMID: 19370346. DOI:10.1007/s00259-009-1081-5.; Hammond K., Margolin D.A. The role of postoperative surveillance in colorectal cancer. Clin Colon Rectal Surg 2007;20(3):249-54. PMID: 20011206. DOI:10.1055/s-2007-984869.; Adam R., Pascal G., Azoulay D. et al. Liver resection for colorectal metastases: the third hepatectomy. Ann Surg 2003;238(6):871—84. PMID: 14631224. DOI:10.1097/01sla.0000098112.04758.4e.; Simmonds P.C., Primrose J.N., Colquitt J.L. et al. Surgical resection of hepatic metas-tases from colorectal cancer: a systematic review of published studies. Br J Cancer 2006;94:982-99. DOI:10.1038/sj.bjc.6603033. PMID: 16538219.; Berger K.L., Nicholson S.A., Dehdashti F., Siegel B.A. FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am J Roentgenol 2000;174(4):1005—8. PMID: 10749239. DOI:10.2214/ajr.174.4.1741005.; Zhu A., Lee D., Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol 2011;38(1):55—69. PMID: 21362516. DOI:10.1053/j.semi-noncol.2010.11.012.; Cipe G., Ergul N., Hasbahceci M. et al. Routine use of positron-emission tomog-raphy/computed tomography for staging of primary colorectal cancer: does it affect clinical management? World J Surg Oncol 2013;11(1):49. PMID: 23445625. DOI:10.1186/1477-7819-11-49.; Lee J.H., Lee M.R. Positron emission to-mography/computed tomography in the staging of colon cancer. Ann Coloproctol 2014;30(1):23—7. PMID: 24639967. DOI:10.3393/ac.2014.30.1.23.; Orlacchio A., Schillaci O., Fusco N. et al. Role of PET/CT in the detection of liver metastases from colorectal cancer. Radiol Med 2009;114(4):571—85. PMID: 19444590. DOI:10.1007/s11547-009-0393-7.; Travaini L.L., Trifiro G., Ravasi L. et al. Role of [18F]FDG-PET/CT after radiofrequency ablation of liver metastases: preliminary results Eur J Nucl Med Mol Imaging 2008;35(7):1316—22. PMID: 18338164. DOI:10.1007/s00259-008-0748-7.; Benson A.B., Venook A.P., Al-Hawary M.M. et al. NCCN Guidelines Insights: Colon Cancer, version 2.2018. J Natl Compr Canc Netw 2018;16(4):359—69. PMID: 29632055. DOI:10.6004/jnccn.2018.0021.; Benson A.B., Venook A.P., Al-Hawary M.M. et al. Rectal Cancer, version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2018;16(7):874—901. PMID: 30006429. DOI:10.6004/jnccn.2018.0061.; Steele S.R., Chang G.J., Hendren S. et al. Practice guideline for the surveillance of patients after curative treatment of colon and rectal cancer. Dis Colon Rectum 2015;58(8):713—25. PMID: 26163950. DOI:10.1097/DCR.0000000000000410.; Kuker R.A., Mesoloras G., Gulec S.A. Optimization of FDG-PET/CT imaging protocol for evaluation of patients with primary and metastatic liver disease. Int Semin Surg Oncol 2007;4(1):17. PMID: 17623095. DOI:10.1186/1477-7800-4-17.; De Bruyne S., Van Damme N., Smeets P. et al. Value of DCE-MRI and FDG-PET/ CT in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br J Cancer 2012;106(12):1926—33. PMID: 22596235. DOI:10.1038/bjc.2012.184.; Werner M.K., Brechtel K., Beyer T. et al. PET/CT for the assessment and quantification of 90 Y biodistribution after selective internal radiotherapy (SIRT) of liver metastases. Eur J Nucl Med Mol Imaging 2010;37(2):407—8. PMID: 19997914. DOI:10.1007/s00259-009-1317-4.; Bienert M., McCook B., Carr B.I. et al. 90Y microsphere treatment of unresectable liver metastases: changes in 18F-FDG uptake and tumour size on PET/CT. Eur J Nucl Med Mol Imaging 2005;32(7):778—87. PMID: 15772860. DOI:10.1007/s00259-004-1752-1.; Petersen R.K., Hess S., Alavi A. et al. Clinical impact of FDG-PET/CT on colorectal cancer staging and treatment strategy. Am J Nucl Med Mol Imaging 2014;4(5):471—82. PMID: 25143865.; Laurens S.T., Oyen WJ. Impact of Fluoro-deoxyglucose PET/Computed Tomography on the Management of Patients with Colorectal Cancer. PET Clin 2015;10(3):345—60. PMID: 26099671. DOI:10.1016/j.cpet.2015.03.007.; Lu Y.Y., Chen J.H., Chien C.R. et al. Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Colorectal Dis 2013;28(8):1039-47. PMID: 23407908. DOI:10.1007/s00384-013-1659-z.; Flamen P., Hoekstra O.S., Homans F. et al. Unexplained rising carcinoembry-onic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET). Eur J Cancer 2001;37(7):862-9. PMID: 11313174. DOI:10.1016/S0959-8049(01)00049-1.; Khan K., Athauda A., Aitken K. et al. Survival outcomes in asymptomatic patients with normal conventional imaging but raised carcinoembryonic antigen levels in colorectal cancer following positron emission tomography-computed tomography imaging. Oncologist 2016;21(12):1502—08. PMID: 27742904. DOI:10.1634/theoncologist.2016-0222.; Goldstein M.J., Mitchell E.P. Carcinoem-bryonic antigen in the staging and followup of patients with colorectal cancer. Cancer Invest 2005;23(4):338— 51. PMID: 16100946. DOI:10.1081/CNV-58878.; Graham R.A., Wang S., Catalano PJ., Haller D.G. Postsurgical surveillance of colon cancer. Preliminary cost analysis of physician examination, carcinoembry-onic antigen testing, chest X-ray, and colonoscopy. Ann Surg 1998;228(1): 59-63. PMID: 9671067.; Van Cutsem E., Cervantes A., Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27(8):1386—422. PMID: 27380959. DOI:10.1093/annonc/mdw235.; Fong Y., Fortner J., Sun R.L. et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 1999;230: 309-18. PMID: 10493478.; Simmonds P.C., Primrose J.N., Colquitt J.L. et al. Surgical resection of hepatic metas-tases from colorectal cancer: A systematic review of published studies. Br J Cancer 2006;94:982-99. PMID: 16538219. DOI:10.1038/sj.bjc.6603033.; Huebner R.H., Park K.C., Shepherd J.E. et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 2000;41(7):1177—89. PMID: 10914907.; Заривчацкий М.Ф., Мугатаров И.Н., Каменских Е.Д. Хирургическое лечение метастазов колоректального рака в печень. Анналы хирургической гепатологии 2018;23(1):80—7. DOI:10.16931/1995-5464.2018-1-80-87.; Bipat S., van Leeuwen M.S., Comans E.F. et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis — metaanalysis. Radiology 2005;237:123-31. PMID: 16100087. DOI:10.1148/ra-diol.2371042060.; Ackland S.P., Jones M., Tu D. et al. A meta-analysis of two randomised trials of early chemotherapy in asymptomatic metastatic colorectal cancer. Br J Cancer 2005;93(11):1236—43. PMID: 16265352. DOI:10.1038/sj.bjc.6602841.; Gade M., Kubik M., Fisker R.V. et al. Diagnostic value of 18F-FDG PET/CT as first choice in the detection of recurrent colorectal cancer due to rising CEA. Cancer Imaging 2015;15:11. PMID: 26263901. DOI:10.1186/s40644-015-0048-y.; Moulton C., Levine M.N., Law C. et al. An Ontario Clinical Oncology Group (OCOG) randomized controlled trial (RCT) assessing FDG PET/CT in resectable liver colorectal adenocarcinoma me-tastases (CAM). J Clin Oncol 2011;29(suppl):abstr. 3520. DOI:10.1200/jco.2011.29.15_suppl.3520.; Maffione A.M., Lopci E., Bluemel C. et al. Diagnostic accuracy and impact on management of 18F-FDG PET and PET/ CT in colorectal liver metastasis: a metaanalysis and systematic review. Eur J Nucl Med Mol Imaging 2015;42(1):152-63. PMID: 25319712. DOI:10.1007/s00259-014-2930-4.

  5. 5
    Academic Journal

    Πηγή: Medical Visualization; № 1 (2018); 57-67 ; Медицинская визуализация; № 1 (2018); 57-67 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/508/459; Ferlay J., Soerjomataram I., Ervik M., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D., Forman D., Bray F. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. 2013. DOI:10.1002/ijc.29210.; Hidalgo M., Cascinu S., Kleeff J., Labianca R., Löhr J., Neoptolemos J., Real F., Van Laethem J., Heinemann V. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 2013; 15: 8–18. DOI:10.1016/j.pan.2014.10.001.; Solcia E., Capella C., Klöppel G. Tumors of the Pancreas: AFIP Atlas of Tumor Pathology, 3rd series, fascicle 20. Washington, DC: Armed Forces Institute of Pathology. 1997: 14–18.; Malvezzi M., Carioli G., Bertuccio P., Rosso T., Boffetta P., Levi F., La Vecchia C., Negri E. European cancer mortality predictions for the year 2016 with focus on leukaemias. Ann. Oncol. 2016; 27: 725–731. DOI:10.1093/annonc/mdw022.; Chari S.T., Leibson C.L., Rabe K.G., Timmons L.J., Ransom J., De Andrade M., Petersen G.M. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008; 134 (1): 95–101. DOI:10.1053/j.gastro.2007.10.040.; Bosetti C., Lucenteforte E., Silverman D.T., Petersen G., Bracci P.M., Ji B.T. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann. Oncol. 2012; 23 (7): 1880–1888. DOI:10.1093/annonc/mdr541.; Duell E. J., Lucenteforte E., Olson S. H., Bracci P. M., Li D., Risch H. A. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (Panс4). Ann. Oncol. 2012; 23 (11): 140. DOI:10.1093/annonc/mds140.; Artinyan A., Soriano P. A., Prendergast C., Low T., Ellenhorn J.D., Kim J. The anatomic location of pancreatic cancer is a prognostic factor for survival. HPB. 2008; 10 (5): 371–376. DOI:10.1080/13651820802291233.; Gospodarowicz M.K., Brierley J.D., Wittekind C. TNM classification of malignant tumours. 2017: 94–95.; Khalid A., Dewitt J., Ohori N. P., Chen J. H., Fasanella K. E., Sanders U. EUS-FNA mutational analysis in differentiating autoimmune pancreatitis and pancreatic cancer. Pancreatology. 2011; 11 (5): 482–486. DOI:10.1159/000331505.; Conrad C., Fernández-del Castillo C. Preoperative evaluation and management of the pancreatic head mass. J. Surg. Oncol. 2013; 107 (1): 23–32. DOI:10.1002/jso.23165.; Giovannini M. Contrast-enhanced and 3-dimensional endoscopic ultrasonography. Gastroenterol. Clin. N. Am. 2010; 39 (4): 845–858. DOI:10.1016/j.gtc.2010.08.027.; D’Onofrio M., Biagioli E., Gerardi C., Canestrini S., Rulli E., Crosara S. Diagnostic performance of contrast-enhanced ultrasound (CEUS) and contrast-enhanced endoscopic ultrasound (ECEUS) for the differentiation of pancreatic lesions: a systematic review and meta-analysis. Ultraschall Med. – Eur. J. Ultrasound. 2014; 35 (6): 515–521. DOI:10.1055/s-0034-1385068.; Kamisawa T., Wood L. D., Itoi T., Takaori K. Pancreatic cancer. Lancet. 2016; 388 (10039): 73–85. DOI:10.1016/S0140-6736(16)00141-0.; Karmazanovsky G., Fedorov V., Kubyshkin V., Kotchatkov A. Pancreatic head cancer: accuracy of CT in determination of resectability. Abdom. Imaging. 2005; 30 (4): 488–500. DOI:10.1007/s00261-004-0279-z.; Ahn S.S., Kim M.J., Choi J.Y., Hong H.S., Chung Y.E., Lim J.S. Indicative findings of pancreatic cancer in prediagnostic CT. Eur. Radiol. 2009; 19 (10): 2448–2455. DOI:10.1007/s00330-009-1422-6.; Li H., Zeng M.S., Zhou K.R., Lou W. Pancreatic adenocarcinoma: the different CT criteria for peripancreatic major arterial and venous invasion. J. Comput. Assist. Tomogr. 2005; 29 (2): 170–175.; d'Assignies G., Couvelard A., Bahrami S., Vullierme M.P., Hammel P., Hentic O. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors1. Radiology. 2009; 250 (2): 407–416. DOI:10.1148/radiol.2501080291.; Нерестюк Я.И. КТ-перфузия при опухолях поджелудочной железы. Медицинская визуализация. 2015; 3: 57–67. Nerestjuk Ja.I. CT-perfusion in tumors of the pancreas. Medical Visualization. 2015; 3: 57–67. (In Russian); Bipat S., Phoa S.S.S., van Delden O.M., Bossuyt P.M., Gouma D.J., Laméris J.S. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J. Comput. Assist. Tomogr. 2005; 29 (4): 438–445.; Park H.S., Lee J.M., Choi H.K., Hong S.H., Han J.K., Choi B.I. Preoperative evaluation of pancreatic cancer: Comparison of gadolinium enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J. Magn. Reson. Imaging. 2009; 30 (3): 586–595. DOI:10.1002/jmri.21889.; Kim J.H., Park S.H., Yu E.S., Kim M.H., Kim J., Byun J.H., Lee M.G. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology. 2010; 257 (1): 87–96. DOI:10.1148/radiol.10100015.; Adamek H.E., Albert J., Breer H., Weitz M., Schilling D., Riemann J. F. Pancreatic cancer detection with magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography: a prospective controlled study. Lancet. 2000; 356 (9225): 190–193. DOI:10.1016/S0140-6736(00)02479-X.; Raman S.P., Horton K.M., Fishman E.K. Multimodality imaging of pancreatic cancer – computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer J. 2012; 18 (6): 511–522. DOI:10.1097/PPO.0b013e318274a461.; Hruban R.H., Pitman M.B., Klimstra D.S. Tumors of the pancreas. Am. Registry Pathol. 2007; 6: 13–21. DOI:10.1043/1543-2165-133.3.454.; Гарматина О.Ю. Современные методы неинвазивной визуализации желчевыводящих путей. Клінічна та експериментальна патологія. 2014; 13 (2): 199–204. Garmatina O.Ju. Modern methods of non-invasive imaging of the biliary tract. Klinichna ta eksperimental'na patologija. 2014; 13 (2): 199–204. (In Russian); Zakharova O.P., Karmazanovsky G.G., Egorov V.I. Pancreatic adenocarcinoma: Outstanding problems. Wld J. Gastrointest. Surg. 2012; 4 (5): 104. DOI:10.4240/wjgs.v4.i5.104.; Шима В., Кауэлблингер К. Аденокарцинома поджелудочной железы: выявление, определение стадии и дифференциальная диагностика. Медицинская визуализация. 2015; 5: 52–72. Shíma V., Kabelbinder K. Pancreatic adenocarcinoma: detection, stage determination and differential diagnosis. Medical Visualization. 2015; 5: 52–72. (In Russian); Higashi T., Saga T., Nakamoto Y., Ishimori T., Fujimoto K., Doi R. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—Usefulness and limitations in “clinical reality”. Ann. Nucl. Med. 2003; 17 (4): 261–279.; Kauhanen S.P., Komar G., Seppänen M.P., Dean K.I., Minn H.R., Kajander S.A. A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann. Surg. 2009; 250 (6): 957–963. DOI:10.1097/SLA.0b013e3181b2fafa.; Dibble E.H., Karantanis D., Mercier G., Peller P.J., Kachnic L.A., Subramaniam R.M. PET/CT of cancer patients: part 1, pancreatic neoplasms. Am. J. Roentgenol. 2012; 199 (5): 952–967. DOI:10.2214/AJR.11.8182.; Lyshchik A., Higashi T., Hara T., Nakamoto Y., Fujimoto K., Doi R. Expression of glucose transporter-1, hexokinase-II, proliferating cell nuclear antigen and survival of patients with pancreatic cancer. Cancer Invest. 2007; 25 (3): 154–162. DOI:10.1080/07357900701208931.; Nishiyama Y., Yamamoto Y., Monden T., Sasakawa Y., Tsutsui K., Wakabayashi H. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl. Med. Commun. 2005; 26 (10): 895–901.; Bares R., Klever P., Hauptmann S., Hellwig D., Fass J., Cremerius U. 18F-fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology. 1994; 192 (1): 79–86. DOI:10.1148/radiology.192.1.8208970.; Ruf J., Hänninen E. L., Böhmig M., Koch I., Denecke T., Plotkin M. Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology. 2006; 6 (6): 512–519. DOI:10.1159/000096993.; Wang X., Yu L. J. 18F-FDG PET/CT in detection of pancreatic cancer: Value of synthetic analysis interpretation. Zhongguo Yixue Yingxiang Jishu. 2007; 23: 1709–1712.; Hillner B.E., Siegel B.A., Liu D., Shields A.F., Gareen I.F., Hanna L. Impact of positron emission tomography/ computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J. Clin. Oncol. 2008; 26 (13): 2155–2161. DOI:10.1200/JCO.2007.14.5631.; Wang Z., Chen J. Q., Liu J. L., Qin X. G., Huang, Y. FDGPET in diagnosis, staging and prognosis of pancreatic carcinoma: a meta-analysis. Wld J. Gastroenterol. 2013; 19 (29): 4808. DOI:10.3748/wjg.v19.i29.4808.; Nakata B., Nishimura S., Ishikawa T., Ohira M., Nishino H., Kawabe J. Prognostic predictive value of 18F-fluorodeoxyglucose positron emission tomography for patients with pancreatic cancer. Int. J. Oncol. 2001; 19 (1): 53–58.; Lyshchik A., Higashi T., Nakamoto Y., Fujimoto K., Doi R., Imamura M., Saga T. Dual-phase 18F-fluoro-2-deoxy-Dglucose positron emission tomography as a prognostic parameter in patients with pancreatic cancer. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32 (4): 389–397. DOI:10.1007/s00259-004-1656-0.; Topkan E., Parlak C., Kotek A., Yapar A. F., Pehlivan B. Predictive value of metabolic 18FDG-PET response on outcomes in patients with locally advanced pancreatic carcinoma treated with definitive concurrent chemoradiotherapy. BMC Gastroenterol. 2011; 11 (1): 123. DOI:10.1186/1471-230X-11-123.; Heinrich S., Goerres G.W., Schäfer M., Sagmeister M., Bauerfeind P., Pestalozzi B.C. Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann. Surg. 2005; 242 (2): 235–243.; Coleman R.E., DeGrado T.R., Wang S., Baldwin S.W., Orr M.D., Reiman R.E., Price D.T. Preliminary Evaluation of F-18 Fluorocholine (FCH) as a PET Tumor Imaging Agent. Clin. Positron Imaging. 2000; 3 (4): 147.; Wang X.Y., Yang F., Jin C., Fu D.L. Utility of PET/CT in diagnosis, staging, assessment of resectability and metabolic response of pancreatic cancer. Wld J. Gastroenterol. 2014; 20 (42): 15580–15589. DOI:10.3748/wjg.v20.i42.15580.; Nishiyama Y., Yamamoto Y., Monden T., Sasakawa Y., Tsutsui K., Wakabayashi H., Ohkawa M. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl. Med. Communications. 2005; 26 (10): 895–901.; Tann M., Sandrasegaran K., Jennings S.G., Skandarajah A., McHenry L., Schmidt C.M. Positron-emission tomography and computed tomography of cystic pancreatic masses. Clin. Radiol. 2007; 62 (8): 745–751. DOI:10.1016/j.crad.2007.01.023.; Takakura K., Sumiyama K., Munakata K., Ashida H., Arihiro S., Kakutani H., Tajiri H. Clinical usefulness of diffusion-weighted MR imaging for detection of pancreatic cancer: comparison with enhanced multidetector-row CT. Abdom. Imaging. 2011; 36 (4): 457–462. DOI:10.1007/s00261-011-9728-7.; Neoptolemos J.P., Dunn J.A., Stocken D.D., Almond J., Link K., Beger H., Fernandez-Cruz L. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet. 2001; 358 (9293): 1576–1585.; Ford E.C., Herman J., Yorke E., Wahl R.L. 18F-FDG PET/ CT for image-guided and intensity-modulated radiotherapy. J. Nucl. Med. 2009; 50 (10): 1655–1665. DOI:10.2967/jnumed.108.055780.; Topkan E., Yavuz A.A., Aydin M., Onal C., Yapar F., Yavuz M.N. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J. Experim. & Clin. Cancer Res. 2008; 27 (1): 41. DOI:10.1186/1756-9966-27-41.; Rose D.M., Delbeke D., Beauchamp R.D., Chapman W.C., Sandler M.P., Sharp K.W., Leach S.D. 18-Fluorodeoxyglucose-positron emission tomography in the management of patients with suspected pancreatic cancer. Ann. Surg. 1999; 229 (5): 729.; Bang S., Chung H.W., Park S.W., Chung J.B., Yun M., Lee J.D., Song S.Y. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J. Clin. Gastroenterol. 2006; 40 (10): 923–929. DOI:10.1097/01.mcg.0000225672.68852.05.; Ruf J., Hänninen E.L., Oettle H., Plotkin M., Pelzer U., Stroszczynski C., Amthauer H. Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/MRI. Pancreatology. 2005; 5 (2): 266–272. DOI:10.1159/000085281.; Michl P., Pauls S., Gress T.M. Evidence-based diagnosis and staging of pancreatic cancer. Best Pract. Res. Clin. Gastroenterol. 2006; 20 (2): 227–251. DOI:10.1016/j.bpg.2005.10.005.; Goh B.K., Chung Y.F., Ng D.C., Selvarajan S., Soo K.C. Positron emission tomography with 2-deoxy-2-[18f] fluoro-D-glucose in the detection of malignancy in intraductal papillary mucinous neoplasms of the pancreas. JOP. 2007; 8 (3): 350–354.; Langer A.A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a costeffective manner? BMC Health Services Res. 2010; 10 (1): 283. DOI:10.1186/1472-6963-10-283.; Segard T., Robins P.D., Yusoff I.F., Ee H., Morandeau L., Campbell E.M., Francis R.J. Detection of hypoxia with 18F-fluoromisonidazole (18F-FMISO) PET/CT in suspectedor proven pancreatic cancer. Clin. Nucl. Med. 2013; 38 (1): 1–6. DOI:10.1097/RLU.0b013e3182708777.; Herrmann K., Erkan M., Dobritz M., Schuster T., Siveke J.T., Beer A.J., Kleeff J. Comparison of 3′-deoxy3′-[18F] fluorothymidine positron emission tomography (FLT PET) and FDG PET/CT for the detection and characterization of pancreatic tumours. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (5): 846–851. DOI:10.1007/s00259-012-2061-8.; Henriksen G., Herz M., Hauser A., Schwaiger M., Wester H.J. Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F] fluorocholine ([18F] dOC). Nucl. Med. Biol. 2004; 31 (7): 851–858.; Yao J.C., Hassan M., Phan A., Dagohoy C., Leary C., Mares J.E., Evans D.B. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008; 26 (18): 3063–3072. DOI:10.1200/JCO.2007.15.4377.; Bosman F.T., Carneiro F., Hruban R.H., Theise N.D. WHO classification of tumours of the digestive system. Wld Health Organization. 2010; 4.; Krenning E.P., Kwekkeboom D.J., Bakker W.E.A., Breeman W.A.P., Kooij P.P.M., Oei H.Y., Visser T.J. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]-and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med. 1993; 20 (8): 716–731. DOI:10.1007/BF00181765.; Srirajaskanthan R., Kayani I., Quigley A.M., Soh J., Caplin M.E., Bomanji J. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J. Nucl. Med. 2010; 51 (6): 875–882. DOI:10.2967/jnumed.109.066134.; Schreiter N.F., Brenner W., Nogami M., Buchert R., Huppertz A., Pape U.F., Prasad V., Hamm B., Maurer M. Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET/CT for staging enteropancreatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (1): 72–82. DOI:10.1007/s00259-011-1935-5.; Ambrosini V., Campana D., Bodei L., Nanni C., Castellucci P., Allegri V., Fanti S. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J. Nucl. Med. 2010; 51 (5): 669–673. DOI:10.2967/jnumed.109.071712.; Ambrosini V., Campana D., Tomassetti P., Fanti S. 68Galabelled peptides for diagnosis of gastroenteropancreatic NET. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (1): 52–60. DOI:10.1007/s00259-011-1989-4.; Koopmans K.P., de Vries E.G., Kema I.P., Elsinga P.H., Neels O.C., Sluiter W.J., Jager P.L. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 2006; 7 (9): 728–734.; Kayani I., Conry B.G., Groves A.M., Win T., Dickson J., Caplin M., Bomanji J.B. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J. Nucl. Med. 2009; 50 (12): 1927–1932. DOI:10.1016/S1470-2045(06)70801-4.; Pasquali C., Rubello D., Sperti C., Gasparoni P., Liessi G., Chierichetti F., Pedrazzoli S. Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? Wld J. Surg. 1998; 22 (6): 588–592.; Binderup T., Knigge U., Loft A., Federspiel B., Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 2010; 16 (3): 978–985. DOI:10.1158/1078-0432.CCR-09-1759.; https://medvis.vidar.ru/jour/article/view/508

  6. 6
    Academic Journal

    Relation: Веснік Полацкага дзяржаўнага ўніверсітэта. Серыя C, Фундаментальныя навукі; Herald of Polotsk State University. Series C, Fundamental sciences; Вестник Полоцкого государственного университета. Серия C, Фундаментальные науки; Серия C, Фундаментальные науки;2017. - № 4; https://elib.psu.by/handle/123456789/20342; 544.58: 661.12

    Διαθεσιμότητα: https://elib.psu.by/handle/123456789/20342

  7. 7
    Academic Journal

    Πηγή: Medical Visualization; № 5 (2016); 67-73 ; Медицинская визуализация; № 5 (2016); 67-73 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/333/333; Kelly D. Hepatocellular Carcinoma in Children. Clin. Liver Disease. 2015; 19 (2): 433–447.; Perlmutter D.H. Pathogenesis of chronic liver injury and hepatocellular carcinoma in alpha-1-antitrypsin deficiency. Pediatr. Res. 2006; 60 (2): 233–238.; Моногарова Н.Е., Мороз Т.В. Недостаточность альфа-1-антитрипсина. Новости медицины и фармации. 2009; 304: 12–73. Monogarova N.E., Moroz T.V. Deficiency of alpha-1- antitrypsin. Novosti meditsini i pharmatsdii. 2009; 304: 12–73. (In Russian); Labrune P., Trioche P., Duvaltier I. Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature. J. Pediatr. Gastroenterol. Nutr. 1997; 24 (3): 276–279.; Chen Y.T., Burchell A. Glycogen storage diseases. Harrison's Principles Intern. Med. 1998: 2176–2182.; Weinberg A.G., Mize C.E., Worthen H.G. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J. Pediatr. 1976; 88 (3): 434–438.; Davit-Spraul A., Gonzales E., Baussan C. Progressive familial intrahepatic cholestasis. Orphanet J. Rare Dis. 2009; 4 (1): 12–24.; Reuben A. Hepatocellular carcinoma in adults and children. Clin. Liver Dis. 2015; 19 (2): 8–19.; Iwatsuki S., Sheahan D., Yokoyama I. Hepatic resection versus transplantation for hepatocellular carcinoma. Ann. Surg. 1991; 214 (3): 221–228.; Ikeda M., Okada S., Ueno H. Radiofrequency ablation and percutaneous ethanol injection in patients with small hepatocellular carcinoma: a comparative study. Jap. J. Clin. Oncol. 2001; 31 (7): 322–326.; Tagge E.P., Tagge D.U., Reyes J. Resection, including transplantation, for hepatoblastoma and hepatocellular carcinoma: impact on survival. J. Pediatr. Surg. 2009; 27 (3): 292–297.; Zen Y., Vara R., Portmann B. Childhood hepatocellular carcinoma: a clinicopathological study of 12 cases with special reference to EpCAM. Histopathology. 2014; 64 (5): 671–682.; Caturelli E. et al. Hemangioma-like lesions in chronic liver disease: diagnostic evaluation in patients 1. Radiology. 2001; 220 (2): 337–342.; Matsui O., Kadoya M., Kameyama T. Benign and malignant nodules in cirrhotic livers: distinction based on blood supply. Radiology. 1991; 178 (2): 493–497.; Fracanzani A.L., Burdick L., Borzio M. Contrast-enhanced Doppler ultrasonography in the diagnosis of hepatocellular carcinoma and premalignant lesions in patients with cirrhosis. Hepatology. 2001; 34 (6): 1109–1112.; Colli A., Fraquelli M., Casazza G. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alphafetoprotein in diagnosing hepatocellular carcinoma: a systematic review. Am. J. Gastroenterol. 2006; 101 (3): 513–523.; Wilson S.R., Burns P.N. An algorithm for the diagnosis of focal liver masses using microbubble contrastenhanced pulse-inversion sonography. Am. J. Roentgenol. 2006; 186 (5): 1401–1412.; European Association For The Study Of The Liver. EASL–EORTC clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 2012; 56 (4): 908–943.; Forner A., Vilana R., Ayuso C. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective valida tion of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 2008; 47 (1): 97–104.; Breedis C., Young G. The blood supply of neoplasms in the liver. Am. J. Pathol. 1954; 30 (5): 969–985.; Baron R.L., Nalesnik M., Holbert B.L. Hepatocellular carcinoma: evaluation with biphasic, contrast-enhanced, helical CT. Radiology. 1996; 199 (2): 505–511.; Кармазановский Г.Г., Шимановский Н.Л. Диагностическая эффективность нового магнитно-резонансного контрастного средства “Примовист” (гадоксетовая кислота) при выявлении первичных и вторичных опухолей печени. Медицинская визуализация. 2007; 6: 135–143. Karmazanovsky G.G., Shimanovsky N.L. The diagnostic efficacy of a new magnetic resonance contrast agent “Primovist” (gadoxetate acid) in the identification of primary and secondary liver tumors. Meditsinskaya vizualizatsiya. 2007; 6: 135–143. (In Russian); Терновой С.К., Шахиджанова С.В. Магнитно-резонансная томография в диагностике очаговых заболеваний печени (обзор литературы). Медицинская визуализация. 1999; 3: 24–27. Ternovoy S.K., Shahidzhanova S.V. Magnetic-resonance imaging in the diagnosis of focal liver disease (review). Meditsinskaya vizualizatsiya. 1999; 4: 14–23. (In Russian); Лукьянченко А.Б., Медведева Б.М. Магнитно-резонансная томография в диагностике и дифференциальной диагностике очаговых поражений печени. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2004; 15 (1): 2. Lukyanchenko A.B., Medvedeva B.M. Magnetic resonance imaging in the diagnosis and differential diagnosis of focal liver lesions. Vestnik RONC im. N.N. Blohina RAMN. 2004; 15 (1): 2. (In Russian); Jeong Y.Y., Yim N.Y., Kang H.K. Hepatocellular carcinoma in the cirrhotic liver with helical CT and MRI: imaging spectrum and pitfalls of cirrhosis-related nodules. Am. J. Roentgenol. 2005; 185 (4): 1024–1032.; Lee M.H., Kim S.H., Park M.J. Gadoxetic acid-enhanced hepatobiliary phase MRI and high-b-value diffusionweighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease. Am. J. Roentgenol. 2011; 197 (5): 868–875.; Лукьянченко А.Б., Медведева Б.М. Современная тактика распознавания новообразований печени. Издательская группа РОНЦ; Практическая медицина. 2015; 87–91. Lukyanchenko A.B., Medvedeva B.M. Modern tactics recognition of liver tumors. Izdatel'skaya gruppa RONC; Prakticheskaya meditsdina. 2015; 87–91. (In Russian); Delbeke D., Martin W.H., Sandler M.P. Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch. Surg. 1998; 133 (5): 510–516.; Trojan J., Schroeder O., Raedle J. Fluorine-18 FDG positron emission tomography for imaging of hepato cellular carcinoma. Am. J. Gastroenterol. 1999; 94 (11): 3314–3319.; Talbot J.N., Gutman F., Fartoux L. PET/CT in patients with hepatocellular carcinoma using [18F] fluorocholine: preliminary comparison with [18F] FDG PET/CT. Eur. J. Nucl. Med. Molecular Imaging. 2006; 33 (11): 1285–1289.; Yamamoto Y., Nishiyama Y., Kameyama R. Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J. Nuclear Med. 2008; 49 (8): 1245–1248.; Hwang K.H., Choi D.J., Lee S.Y. Evaluation of patients with hepatocellular carcinomas using [11C] acetate and [18F] FDG PET/CT: A preliminary study. Applied Radiation and Isotopes. 2009; 67 (7): 1195–1198.; Lee J.W., Paeng J.C., Kang K.W. Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J. Nuclear Med. 2009; 50 (5): 682–687.; Talbot J.N., Fartoux L., Balogova S. Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J. Nuclear Med. 2010; 51 (11): 1699–1706.; van den Esschert J.W., Bieze M., Beuers U.H. Differentiation of hepatocellular adenoma and focal nodular hyperplasia using 18F-fluorocholine PET/CT. Eur. J. Nucl. Med. Molecular Imaging. 2011; 38 (3): 436–440.; Kuang Y., Salem N., Tian H. Imaging lipid synthesis in hepatocellular carcinoma with [methyl-11C] choline: correlation with in vivo metabolic studies . J. Nuclear Med. 2011; 52 (1): 98–106.; Cahill G.F., Ashmore J., Renold A.E. Blood glucose and the liver . Am. J. Med. 1959; 26 (2): 264–282.; Hers H.G. The control of glycogen metabolism in the liver. Ann. Rev. Biochemistry. 1976; 44 (1): 167–190.; Nordlie R.C., Foster J.D., Lange A.J. Regulation of glucose production by the liver. Ann. Rev. Nutrition. 1999; 19 (1): 379–406.; Lee J.D., Yang W.I., Park Y.N. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased 18F-FDG uptake. J. Nucl. Med. 2005; 46 (10): 1753–1759.; Paudyal B., Oriuchi N., Paudyal P. Clinicopathological presentation of varying 18F-FDG uptake and expression of glucose transporter 1 and hexokinase II in cases of hepatocellular carcinoma and cholangiocellular carcinoma. Ann. Nuclear Med. 2008; 22 (1): 83–86.; Sorensen M., Frisch K., Bender D. The potential use of 2-[18F] fluoro-2-deoxy-D-galactose as a PET/CT tracer for detection of hepatocellular carcinoma. Eur. J. Nuclear Med. Molec. Imaging. 2011; 38 (9): 1723–1731.; Pritchard P. H., Vance D. E. Choline metabolism and phosphatidylcholine biosynthesis in cultured rat hepatocytes. Biochem. J. 1981; 196: 261–267.; Ackerstaff E., Glunde K., Bhujwalla Z.M. Choline phospholipid metabolism: a target in cancer cells? J. Cell. Biochem. 2003; 90 (3): 525–533.; Aoyama C., Liao H., Ishidate K. Structure and function of choline kinase isoforms in mammalian cells. Progress Lipid Res. 2004; 43 (3): 266–281.; Kent C. Regulatory enzymes of phosphatidyl choline biosynthesis: a personal perspective. Biochimicaet Biophysica Acta (BBA)-Molecular and Cell. Biology of Lipids. 2005; 1733 (1): 53–66.; Kuang Y., Salem N., Corn D. J. Transport and metabolism of radiolabeled choline in hepatocellular carcinoma. Molec. Pharmaceutics. 2010; 7 (6): 2077–2092.; Ringe K.I., Husarik D.B., Sirlin C.B. Gadoxetate disodium–enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. Am. J. Roentgenol. 2010; 195 (1): 13–28.; Jhaveri K., Cleary S., Audet, P., Balaa F. Сonsensus statements from a multidisciplinary expert panel on the utilization and application of a liver-specific MRI contrast agent (gadoxetic acid). Am. J. Roentgenol. 2015; 204 (3): 498–509.; https://medvis.vidar.ru/jour/article/view/333

    Διαθεσιμότητα: https://medvis.vidar.ru/jour/article/view/333

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20