-
1Academic Journal
Authors: I. P. Shilovskiy, G. B. Pasikhov, V. V. Smirnov, I. A. Kofiadi, M. V. Popova, P. A. Strueva, M. R. Khaitov, И. П. Шиловский, Г. Б. Пасихов, В. В. Смирнов, И. А. Кофиади, М. В. Попова, П. А. Струева, М. Р. Хаитов
Contributors: The study was supported by the Russian Science Foundation (Grant No. 23-45-10031)., Исследование выполнено за счет гранта Российского научного фонда № 23-45-10031.
Source: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024); 157-171 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024); 157-171 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-2
Subject Terms: эффективность препаратов миРНК, RNA interference, small interfering RNA, siRNA, personalised medicine, RNA delivery systems, GalNAc, cell-penetrating peptides, clinical trials, safety of siRNA medicinal products, efficacy of siRNA medicinal products, интерференция РНК, малые интерферирующие РНК, миРНК, персонализированная медицина, системы доставки РНК, клеточнопроникающие пептиды, клинические исследования, безопасность препаратов миРНК
File Description: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/575/860; https://www.biopreparations.ru/jour/article/view/575/842; https://www.biopreparations.ru/jour/article/downloadSuppFile/575/866; https://www.biopreparations.ru/jour/article/downloadSuppFile/575/867; https://www.biopreparations.ru/jour/article/downloadSuppFile/575/975; Тимотиевич ЕД, Шиловский ИП, Хаитов МР. Пептидные носители как средства доставки терапевтических нуклеиновых кислот. Механизмы и потенциал применения в медицине. Биохимия. 2023;88(11):2183–205. https://doi.org/10.31857/S032097252311012X; Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003;67(4):657–85. https://doi.org/10.1128/MMBR.67.4.657-685.2003; Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39. https://doi.org/10.1146/annurev-biophys-083012-130404; Gangopadhyay S, Gore KR. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications. RNA Biol. 2022;19(1):452–67. https://doi.org/10.1080/15476286.2022.2052641; Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, et al. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci. 2023;30(1):88. https://doi.org/10.1186/S12929-023-00981-9; Wang Y, Zhang R, Tang L, Yang L. Nonviral delivery systems of mRNA vaccines for cancer gene therapy. Pharmaceutics. 2022;14(3):512. https://doi.org/10.3390/pharmaceutics14030512; Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release. 2022;342:241–79. https://doi.org/10.1016/J.JCONREL.2022.01.008; Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94. https://doi.org/10.1038/S41573-020-0075-7; An G. Pharmacokinetics and pharmacodynamics of GalNAc-Conjugated siRNAs. J Clin Pharmacol. 2024;64(1):45–57. https://doi.org/10.1002/JCPH.2337; Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: a versatile vector for co-delivery of drug and genes in cancer. J Control Release. 2021;330:1220–8. https://doi.org/10.1016/j.jconrel.2020.11.028; Falato L, Gestin M, Langel Ü. Cell-penetrating peptides delivering siRNAs: an overview. Methods Mol Biol. 2021;2282:329–52. https://doi.org/10.1007/978-1-0716-1298-9_18; Kozhikhova KV, Shilovskiy IP, Shatilov AA, Timofeeva AV, Turetskiy EA, Vishniakova LI, et al. Linear and dendrimeric antiviral peptides: Design, chemical synthesis and activity against human respiratory syncytial virus. J Mater Chem B. 2020;8:2607–17. https://doi.org/10.1039/c9tb02485a; Shilovskiy I, Nikonova A, Barvinskaia E, Kaganova M, Nikolskii A, Vishnyakova L, et al. Anti-inflammatory effect of siRNAs targeted IL-4 and IL-13 in a mouse model of allergic rhinitis. Allergy. 2022;77(9):2829–32. https://doi.org/10.1111/ALL.15366; Никольский АА, Шиловский ИП, Юмашев КВ, Вишнякова ЛИ, Барвинская ЕД, Ковчина ВИ и др. Влияние локального подавления экспрессии гена Stat3 на нейтрофильное воспаление легких в экспериментальной модели на мышах. Иммунология. 2021;42(6):600–14. https://doi.org/10.33029/0206-4952-2021-42-6-600-614; Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, et al. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021;76(9):2840–54. https://doi.org/10.1111/ALL.14850; Friedrich M, Aigner A. Therapeutic siRNA: state-of-the-art and future perspectives. Biodrugs. 2022;36(5):549–71. https://doi.org/10.1007/S40259-022-00549-3; Badri P, Jiang X, Borodovsky A, Najafian N, Kim J, Clausen VA, et al. Pharmacokinetic and pharmacodynamic properties of cemdisiran, an RNAi therapeutic targeting complement component 5, in healthy subjects and patients with paroxysmal nocturnal hemoglobinuria. Clin Pharmacokinet. 2021;60(3):365–78. https://doi.org/10.1007/S40262-020-00940-9; Barratt J, Liew A, Yeo SC, Fernström A, Barbour SJ, Sperati CJ, et al. Phase 2 trial of cemdisiran in adult patients with IgA nephropathy: a randomized controlled trial. Clin J Am Soc Nephrol. 2024;19(4):452–62. https://doi.org/10.2215/CJN.0000000000000384; Pasi KJ, Lissitchkov T, Mamonov V, Mant T, Timofeeva M, Bagot C, et al. Targeting of antithrombin in hemophilia A or B with investigational siRNA therapeutic fitusiran: results of the phase 1 inhibitor cohort. J Thromb Haemost. 2021;19(6):1436–46. https://doi.org/10.1111/JTH.15270; Srivastava A, Rangarajan S, Kavakli K, Klamroth R, Kenet G, Khoo L, et al. Fitusiran prophylaxis in people with severe haemophilia A or haemophilia B without inhibitors (ATLAS-A/B): a multicentre, open-label, randomised, phase 3 trial. Lancet Haematol. 2023;10(5):322–32. https://doi.org/10.1016/S2352-3026(23)00037-6; Gane EJ, Kim W, Lim TH, Tangkijvanich P, Yoon JH, Sievert W, et al. First-in-human randomized study of RNAi therapeutic RG6346 for chronic hepatitis B virus infection. J Hepatol. 2023;79(5):1139–49. https://doi.org/10.1016/J.JHEP.2023.07.026; Gottlieb J, Zamora MR, Hodges T, Musk AW, Sommerwerk U, Dilling D, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant. 2016;35(2):213–21. https://doi.org/10.1016/J.HEALUN.2015.08.012; DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA. 2010;107(19):8800–5. https://doi.org/10.1073/PNAS.0912186107; Zamora MR, Budev M, Rolfe M, Gottlieb J, Humar A, DeVincenzo J, et al. RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am J Respir Crit Care Med. 2011;183(4):531–8. https://doi.org/10.1164/RCCM.201003-0422OC; Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, Bloch O, et al. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 2021;13(584):3945. https://doi.org/10.1126/SCITRANSLMED.ABB3945; Singerman L. Combination therapy using the small interfering RNA bevasiranib. Retina. 2009;29(6 Suppl):49–50. https://doi.org/10.1097/IAE.0B013E3181AD2341; Garba AO, Mousa SA. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol Eye Dis. 2010;2:75–83. https://doi.org/10.4137/OED.S4878; Cho WG, Albuquerque RJC, Kleinman ME, Tarallo V, Greco A, Nozaki M, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci USA. 2009;106(17):7137–42. https://doi.org/10.1073/PNAS.0812317106; Lu LJ, Tsai JC, Liu J. Novel pharmacologic candidates for treatment of primary open-angle glaucoma. Yale J Biol Med. 2017;90(1):111–18. PMCID: PMC5369028; Moreno-Montañés J, Bleau AM, Jimenez AI. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin Investig Drugs. 2018;27(4):421–6. https://doi.org/10.1080/13543784.2018.1457647; Ahn I, Kang CS, Han J. Where should siRNAs go: applicable organs for siRNA drugs. Exp Mol Med. 2023;55(7):1283–92. https://doi.org/10.1038/s12276-023-00998-y; Thielmann M, Corteville D, Szabo G, Swaminathan M, Lamy A, Lehner LJ, et al. Teprasiran, a small interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study. Circulation. 2021;144(14):1133–44. https://doi.org/10.1161/CIRCULATIONAHA.120.053029; Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265–80. https://doi.org/10.1038/s41576-021-00439-4; Zhang X, Goel V, Robbie GJ. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J Clin Pharmacol. 2019;60(5):573–85. https://doi.org/10.1002/jcph.1553; Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109. https://doi.org/10.1186/s13023-015-0326-6; Taylor L, Gidal B, Blakey G, Tayo B, Morrison G. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs. 2018;32(11):1053–67. https://doi.org/10.1007/s40263-018-0578-5; Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019;9(1):5–23. https://doi.org/10.2217/nmt-2018-0033; Solomon SD, Adams D, Kristen A, Grogan M, González-Duarte A, Maurer MS, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation. 2019;139(4):431–43. https://doi.org/10.1161/CIRCULATIONAHA.118.035831; Sardh E, Harper P. RNAi therapy with givosiran significantly reduces attack rates in acute intermittent porphyria. J Intern Med. 2022;291(5):593–610. https://doi.org/10.1111/joim.13443; Sardh E, Harper P, Balwani M, Stein P, Rees D, Bissell DM, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med. 2019;380(6):549–58. https://doi.org/10.1056/NEJMOA1807838; Balwani M, Sardh E, Ventura P, Peiró PA, Rees DC, Stölzel U, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med. 2020;382(24):2289–301. https://doi.org/10.1056/nejmoa1913147; Garrelfs SF, Frishberg Y, Hulton SA, Koren MJ, O’Riordan WD, Cochat P, et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med. 2021;384(13):1216–26. https://doi.org/10.1056/nejmoa2021712; Frishberg Y, Deschenes G, Groothoff JW, Hulton SA, Magen D, Harambat J, et al. Phase 1/2 study of lumasiran for treatment of primary hyperoxaluria type 1: a placebocontrolled randomized clinical trial. Clin J Am Soc Nephrol. 2021;16(7):1025–36. https://doi.org/10.2215/CJN.14730920; Sas DJ, Magen D, Hayes W, Shasha-Lavsky H, Michael M, Schulte I, et al. Phase 3 trial of lumasiran for primary hyperoxaluria type 1: a new RNAi therapeutic in infants and young children. Genet Med. 2022;24(3):654–62. https://doi.org/10.1016/j.gim.2021.10.024; Scott LJ, Keam SJ. Lumasiran: first approval. Drugs. 2021;81(2):277–82. https://doi.org/10.1007/s40265-020-01463-0; Bardolia C, Amin NS, Turgeon J. Emerging non-statin treatment options for lowering low-density lipoprotein cholesterol. Front Cardiovasc Med. 2021;8:789931. https://doi.org/10.3389/fcvm.2021.789931; Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6. https://doi.org/10.1038/ng1161; Nair JK, Willoughby JLS, Chan A, Charisse K, Alam MR, Wang Q, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–61. https://doi.org/10.1021/ja505986a; Lamb YN. Inclisiran: first approval. Drugs. 2021;81(3):389–95. https://doi.org/10.1007/s40265-021-01473-6; Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51. https://doi.org/10.1056/nejmoa1609243; Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382(16):1507–19. https://doi.org/10.1056/nejmoa1912387; Reijman MD, Schweizer A, Peterson ALH, Bruckert E, Stratz C, Defesche JC, et al. Rationale and design of two trials assessing the efficacy, safety, and tolerability of inclisiran in adolescents with homozygous and heterozygous familial hypercholesterolaemia. Eur J Prev Cardiol. 2022;29(9):1361–8. https://doi.org/10.1093/eurjpc/zwac025; Syed YY. Nedosiran: first approval. Drugs. 2023;83(18):1729–33. https://doi.org/10.1007/s40265-023-01976-4; Lai C, Pursell N, Gierut J, Saxena U, Zhou W, Dills M, et al. Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Mol Ther. 2018;26(8):1983–95. https://doi.org/10.1016/J.YMTHE.2018.05.016; Hoppe B, Koch A, Cochat P, Garrelfs SF, Baum MA, Groothoff JW, et al. Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHYOX1) in primary hyperoxaluria. Kidney Int. 2022;101(3):626–34. https://doi.org/10.1016/J.KINT.2021.08.015; Habtemariam BA, Karsten V, Attarwala H, Goel V, Melch M, Clausen VA, et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin Pharmacol Ther. 2021;109(2):372–82. https://doi.org/10.1002/CPT.1974; Mullard A. FDA approves fifth RNAi drug—Alnylam’s next-gen hATTR treatment. Nat Rev Drug Discov. 2022;21(8):548–9. https://doi.org/10.1038/D41573-022-00118-X; Хаитов МР, Никонова АА, Кофиади ИА, Шиловский ИП, Смирнов ВВ, Елисютина ОГ и др. Результаты I и II фазы клинических исследований препарата МИР 19®. Иммунология. 2023;44(3):291–316. https://doi.org/10.33029/1816-2134-2023-44-3-291-316; Khaitov M, Nikonova A, Kofiadi I, Shilovskiy I, Smirnov V, Elisytina O, et al. Treatment of COVID-19 patients with a SARS-CoV-2-specific siRNA-peptide dendrimer formulation. Allergy. 2023;78(6):1639–53. https://doi.org/10.1111/ALL.15663; https://www.biopreparations.ru/jour/article/view/575