-
1Academic Journal
Συγγραφείς: Eugeniu Cazacu, Eremei Zota, Mariam A. Vardanyan, Radu Niguleanu, Ruslan Pretula, Aleksandra V. Asaturova, Larisa S. Ezhova, Alina S. Badlaeva
Πηγή: Гинекология, Vol 26, Iss 2, Pp 159-164 (2024)
Gynecology 159-164Θεματικοί όροι: endometriosis, 0301 basic medicine, эпителиально-мезенхимальный переход, 0303 health sciences, 03 medical and health sciences, эндометриоз, extragenital endometriosis, экстрагенитальный эндометриоз, RG1-991, Gynecology and obstetrics, epithelial to mesenchymal transition process
Περιγραφή αρχείου: application/pdf
-
2
-
3
-
4Academic Journal
Πηγή: IX Всероссийская Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».
Θεματικοί όροι: эпителиально-мезенхимальный переход, фумихиназолины, вторичные метаболиты, противоопухолевые соединения, Penicillum thymicola
-
5Academic Journal
Συγγραφείς: Lasitsa A.V., Antipina M.I., Nazarova D.A., Rubina K.A., Sysoeva V.Y., Semina E.V.
Συνεισφορές: The development and expansion of plasmids, as well as work with tumor lines, were carried out within the framework of the state assignment of the Lomonosov Moscow State University (assignment No. 03p-23/110-03). Molecular biological research (polymerase chain reaction) and assessment of the migration activity of tumor cells were carried out using the funds of the strategic academic leadership program «Priority 2030» of the I. Kant Baltic Federal University., Разработка и наращивание плазмиды, а также работа с опухолевыми линиями выполнены в рамках государственного задания ФГБОУВО «Московский государственный университет им. М.В. Ломоносова» (задание № 03р-23/110-03). Молекулярно-биологические исследования (полимеразная цепная реакция) и оценка миграционной активности опухолевых клеток выполнены на средства программы стратегического академического лидерства «Приоритет 2030» ФГАОУ ВО «Балтийский федеральный университет им. И. Канта»
Πηγή: Advances in Molecular Oncology; Vol 12, No 3 (2025); 57-69 ; Успехи молекулярной онкологии; Vol 12, No 3 (2025); 57-69 ; 2413-3787 ; 2313-805X
Θεματικοί όροι: urokinase receptor, PLAUR, uPAR, glioma, neuroblastoma, epithelial-mesenchymal transition, cell migration, рецептор урокиназы, глиома, нейробластома, эпителиально-мезенхимальный переход, миграция клеток
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/816/402; https://umo.abvpress.ru/jour/article/view/816
-
6Academic Journal
Συγγραφείς: V. M. Perelmuter, L. A. Tashireva, E. S. Grigoryeva, V. V. Alifanov, E. S. Pudova, A. V. Buzenkova, M. V. Zavyalova, N. V. Cherdyntseva, В. М. Перельмутер, Л. А. Таширева, Е. С. Григорьева, В. В. Алифанов, Е. С. Пудова, А. В. Бузенкова, М. В. Завьялова, Н. В. Чердынцева
Συνεισφορές: The study was carried out with financial support from the Russian Science Foundation, grant No. 23-15-00135., Исследование выполнено при финансовой поддержке гранта Российского научного фонда № 23-15-00135
Πηγή: Siberian journal of oncology; Том 23, № 5 (2024); 133-145 ; Сибирский онкологический журнал; Том 23, № 5 (2024); 133-145 ; 2312-3168 ; 1814-4861
Θεματικοί όροι: стволовость, EpCAMhigh/low/loss, circulating tumor cells, epithelial-mesenchymal transition, carcinomas, breast cancer, invasion, stemness, циркулирующие опухолевые клетки, эпителиально-мезенхимальный переход, карциномы, рак молочной железы, инвазия
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3277/1278; Brown T.C., Sankpal N.V., Gillanders W.E. Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-toMesenchymal Transition. Biomolecules. 2021; 11(7): 956. doi:10.3390/biom11070956.; Perelmuter V.M., Grigoryeva E.S., Savelieva O.E., Alifanov V.V., Andruhova E.S., Zavyalova M.V., Bragina O.D., Garbukov E.Y., Menyailo M.E., Khozyainova A.A., Denisov E.V., Cherdyntseva N.V., Tashireva L.A. EpCAM-CD24+ circulating cells associated with poor prognosis in breast cancer patients. Sci Rep. 2024; 14(1). doi:10.1038/s41598-024-61516-2.; Yahyazadeh Mashhadi S.M., Kazemimanesh M., Arashkia A., Azadmanesh K., Meshkat Z., Golichenari B., Sahebkar A. Shedding light on the EpCAM: An overview. J Cell Physiol. 2019; 234(8): 12569–80. doi:10.1002/jcp.28132.; Nicolazzo C., Raimondi C., Francescangeli F., Ceccarelli S., Trenta P., Magri V., Marchese C., Zeuner A., Gradilone A., Gazzaniga P. EpCAM-expressing circulating tumor cells in colorectal cancer. Int J Biol Markers. 2017; 32(4): 415–20. doi:10.5301/ijbm.5000284.; Mohtar M.A., Syafruddin S.E., Nasir S.N., Low T.Y. Revisiting the Roles of Pro-Metastatic EpCAM in Cancer. Biomolecules. 2020; 10(2). doi:10.3390/biom10020255.; The Cancer Genome Atlas Program (TCGA) [Internet]. Center for Cancer Genomics at the National Cancer Institute. [cited 2024 Sep 2]. URL: https://www.cancer.gov/tcga.; Hatami R., Sieuwerts A.M., Izadmehr S., Yao Z., Qiao R.F., Papa L., Look M.P., Smid M., Ohlssen J., Levine A.C., Germain D., Burstein D., Kirschenbaum A., DiFeo A., Foekens J.A., Narla G. KLF6-SV1 drives breast cancer metastasis and is associated with poor survival. Sci Transl Med. 2013; 5(169). doi:10.1126/scitranslmed.3004688.; Schnell U., Cirulli V., Giepmans B.N. EpCAM: structure and function in health and disease. Biochim Biophys Acta. 2013; 1828(8): 1989–2001. doi:10.1016/j.bbamem.2013.04.018.; Raimondi C., Nicolazzo C., Gradilone A. Circulating tumor cells isolation: the “post-EpCAM era”. Chin J Cancer Res. 2015; 27(5): 461–70. doi:10.3978/j.issn.1000-9604.2015.06.02.; Eslami-S Z., Cortés-Hernández L.E., Alix-Panabières C. Epithelial Cell Adhesion Molecule: An Anchor to Isolate Clinically Relevant Circulating Tumor Cells. Cells. 2020; 9(8). doi:10.3390/cells9081836.; Paschkowsky S., Hsiao J.M., Young J.C., Munter L.M. The discovery of proteases and intramembrane proteolysis 1. Biochem Cell Biol. 2019; 97(3): 265–9. doi:10.1139/bcb-2018-0186.; Liang K.H., Tso H.C., Hung S.H., Kuan I.I., Lai J.K., Ke F.Y., Chuang Y.T., Liu I.J., Wang Y.P., Chen R.H., Wu H.C. Extracellular domain of EpCAM enhances tumor progression through EGFR signaling in colon cancer cells. Cancer Lett. 2018; 433: 165–75. doi:10.1016/j.canlet.2018.06.040.; Gires O., Stoecklein N.H. Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences. Cell Mol Life Sci. 2014; 71(22): 4393–402. doi:10.1007/s00018-014-1693-1.; Huang Y., Chanou A., Kranz G., Pan M., Kohlbauer V., Ettinger A., Gires O. Membrane-associated epithelial cell adhesion molecule is slowly cleaved by γ-secretase prior to efcient proteasomal degradation of its intracellular domain. J Biol Chem. 2019; 294(9): 3051–64. doi:10.1074/jbc.RA118.005874.; Gerlach J.C., Foka H.G., Thompson R.L., Gridelli B., Schmelzer E. Epithelial cell adhesion molecule fragments and signaling in primary human liver cells. J Cell Physiol. 2018; 233(6): 4841–51. doi:10.1002/jcp.26286.; Schnell U., Kuipers J., Giepmans B.N. EpCAM proteolysis: new fragments with distinct functions? Biosci Rep. 2013; 33(2). doi:10.1042/BSR20120128.; Ralhan R., Cao J., Lim T., Macmillan C., Freeman J.L., Walfsh P.G. EpCAM nuclear localization identifes aggressive thyroid cancer and is a marker for poor prognosis. BMC Cancer. 2010; 10. doi:10.1186/1471-2407-10-331.; Hachmeister M., Bobowski K.D., Hogl S., Dislich B., Fukumori A., Eggert C., Mack B., Kremling H., Sarrach S., Coscia F., Zimmermann W., Steiner H., Lichtenthaler S.F., Gires O. Regulated intramembrane proteolysis and degradation of murine epithelial cell adhesion molecule mEpCAM. PLoS One. 2013; 8(8). doi:10.1371/journal.pone.0071836.; Fong D., Moser P., Kasal A., Seeber A., Gastl G., Martowicz A., Wurm M., Mian C., Obrist P., Mazzoleni G., Spizzo G. Loss of membranous expression of the intracellular domain of EpCAM is a frequent event and predicts poor survival in patients with pancreatic cancer. Histopathology. 2014; 64(5): 683–92. doi:10.1111/his.12307.; Winter M.J., Nagelkerken B., Mertens A.E., Rees-Bakker H.A., Briaire-de Bruijn I.H., Litvinov S.V. Expression of Ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Exp Cell Res. 2003; 285(1): 50–8. doi:10.1016/s0014-4827(02)00045-9.; van der Gun B.T., Melchers L.J., Ruiters M.H., de Leij L.F., McLaughlin P.M., Rots M.G. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis. 2010; 31(11): 1913–21. doi:10.1093/carcin/bgq187.; Chaves-Perez A., Mack B., Maetzel D., Kremling H., Eggert C., Harreus U., Gires O. EpCAM regulates cell cycle progression via control of cyclin D1 expression. Oncogene. 2013; 32(5): 641–50. doi:10.1038/onc.2012.75.; Maaser K., Borlak J. A genome-wide expression analysis identifes a network of EpCAM-induced cell cycle regulators. Br J Cancer. 2008; 99(10): 1635–43. doi:10.1038/sj.bjc.6604725.; Pan M., Schinke H., Luxenburger E., Kranz G., Shakhtour J., Libl D., Huang Y., Gaber A., Pavšič M., Lenarčič B., Kitz J., Jakob M., Schwenk-Zieger S., Canis M., Hess J., Unger K., Baumeister P., Gires O. EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGFmediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biol. 2018; 16(9). doi:10.1371/journal.pbio.2006624.; Lin C.W., Liao M.Y., Lin W.W., Wang Y.P., Lu T.Y., Wu H.C. Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition gene expression in colon cancer. J Biol Chem. 2012; 287(47): 39449–59. doi:10.1074/jbc.M112.386235.; Driemel C., Kremling H., Schumacher S., Will D., Wolters J., Lindenlauf N., Mack B., Baldus S.A., Hoya V., Pietsch J.M., Panagiotidou P., Raba K., Vay C., Vallböhmer D., Harréus U., Knoefel W.T., Stoecklein N.H., Gires O. Context-dependent adaption of EpCAM expression in early systemic esophageal cancer. Oncogene. 2014; 33(41): 4904–15. doi:10.1038/onc.2013.441.; Martowicz A., Spizzo G., Gastl G., Untergasser G. Phenotype-dependent efects of EpCAM expression on growth and invasion of human breast cancer cell lines. BMC Cancer. 2012; 12. doi:10.1186/1471-2407-12-501.; Gosens M.J., van Kempen L.C., van de Velde C.J., van Krieken J.H., Nagtegaal I.D. Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol. 2007; 20(2): 221–32. doi:10.1038/modpathol.3800733.; Shi R., Liu L., Wang F., He Y., Niu Y., Wang C., Zhang X., Zhang X., Zhang H., Chen M., Wang Y. Down-regulation of cytokeratin 18 induces cellular partial EMT and stemness through increasing EpCAM expression in breast cancer. Cell Signal. 2020; 76. doi:10.1016/j.cellsig.2020.109810.; Huang H.P., Chen P.H., Yu C.Y., Chuang C.Y., Stone L., Hsiao W.C., Li C.L., Tsai S.C., Chen K.Y., Chen H.F., Ho H.N., Kuo H.C. Epithelial cell adhesion molecule (EpCAM) complex proteins promote transcription factor-mediated pluripotency reprogramming. J Biol Chem. 2011; 286(38): 33520–32. doi:10.1074/jbc.M111.256164.; Zhang D., Yang L., Liu X., Gao J., Liu T., Yan Q., Yang X. Hypoxia modulates stem cell properties and induces EMT through N-glycosylation of EpCAM in breast cancer cells. J Cell Physiol. 2020; 235(4): 3626–33. doi:10.1002/jcp.29252.; Nicolazzo C., Massimi I., Lotti L.V., Vespa S., Raimondi C., Pulcinelli F.M., Gradilone A., Gazzaniga P. Impact of chronic exposure to bevacizumab on EpCAM-based detection of circulating tumor cells. Chin J Cancer Res. 2015; 27(5): 491–6. doi:10.3978/j.issn.1000-9604.2015.04.09.; Lu T.Y., Lu R.M., Liao M.Y., Yu J., Chung C.H., Kao C.F., Wu H.C. Epithelial cell adhesion molecule regulation is associated with the maintenance of the undiferentiated phenotype of human embryonic stem cells. J Biol Chem. 2010; 285(12): 8719–32. doi: 10. 1074/jbc.M109.077081.; Gorges T.M., Tinhofer I., Drosch M., Röse L., Zollner T.M., Krahn T., von Ahsen O. Circulating tumour cells escape from EpCAMbased detection due to epithelial-to-mesenchymal transition. BMC Cancer. 2012; 12. doi:10.1186/1471-2407-12-178.; Königsberg R., Obermayr E., Bises G., Pfeiler G., Gneist M., Wrba F., de Santis M., Zeillinger R., Hudec M., Dittrich C. Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol. 2011; 50(5). doi:10.3109/0284186X.2010.549151.; Alberti S., Ambrogi F., Boracchi P., Fornili M., Querzoli P., Pedriali M., La Sorda R., Lattanzio R., Tripaldi R., Piantelli M., Biganzoli E., Coradini D. Cytoplasmic Trop-1/Ep-CAM overexpression is associated with a favorable outcome in node-positive breast cancer. Jpn J Clin Oncol. 2012; 42(12): 1128–37. doi:10.1093/jjco/hys159.; Rao C.G., Chianese D., Doyle G.V., Miller M.C., Russell T., Sanders R.A. Jr, Terstappen L.W. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol. 2005; 27(1): 49–57.; Seeber A., Untergasser G., Spizzo G., Terracciano L., Lugli A., Kasal A., Kocher F., Steiner N., Mazzoleni G., Gastl G., Fong D. Predominant expression of truncated EpCAM is associated with a more aggressive phenotype and predicts poor overall survival in colorectal cancer. Int J Cancer. 2016; 139(3): 657–63. doi:10.1002/ijc.30099.; The human protein atlas. [Internet]. [cited 2024 Sep 2]. URL: https://www.proteinatlas.org/ENSG00000119888-EPCAM/tissue.; Bantikassegn A., Song X., Politi K. Isolation of epithelial, endothelial, and immune cells from lungs of transgenic mice with oncogeneinduced lung adenocarcinomas. Am J Respir Cell Mol Biol. 2015; 52(4): 409–17. doi:10.1165/rcmb.2014-0312MA.; Hattoum A., Rubin E., Orr A., Michalopoulos G.K. Expression of hepatocyte epidermal growth factor receptor, FAS and glypican 3 in EpCAM-positive regenerative clusters of hepatocytes, cholangiocytes, and progenitor cells in human liver failure. Hum Pathol. 2013; 44(5): 743–9. doi:10.1016/j.humpath.2012.07.018.; Litvinov S.V., van Driel W., van Rhijn C.M., Bakker H.A., van Krieken H., Fleuren G.J., Warnaar S.O. Expression of Ep-CAM in cervical squamous epithelia correlates with an increased proliferation and the disappearance of markers for terminal diferentiation. Am J Pathol. 1996; 148(3): 865–75.; Went P., Vasei M., Bubendorf L., Terracciano L., Tornillo L., Riede U., Kononen J., Simon R., Sauter G., Baeuerle P.A. Frequent highlevel expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer. 2006; 94(1): 128-35. doi:10.1038/sj.bjc.6602924.; Poczatek R.B., Myers R.B., Manne U., Oelschlager D.K., Weiss H.L., Bostwick D.G., Grizzle W.E. Ep-Cam levels in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. J Urol. 1999; 162(4): 1462–6.; Gabriel M.T., Calleja L.R., Chalopin A., Ory B., Heymann D. Circulating Tumor Cells: A Review of Non-EpCAM-Based Approaches for Cell Enrichment and Isolation. Clin Chem. 2016; 62(4): 571–81. doi:10.1373/clinchem.2015.249706.; Yanamoto S., Kawasaki G., Yoshitomi I., Iwamoto T., Hirata K., Mizuno A. Clinicopathologic significance of EpCAM expression in squamous cell carcinoma of the tongue and its possibility as a potential target for tongue cancer gene therapy. Oral Oncol. 2007; 43(9): 869–77. doi:10.1016/j.oraloncology.2006.10.010.; Went P.T., Lugli A., Meier S., Bundi M., Mirlacher M., Sauter G., Dirnhofer S. Frequent EpCam protein expression in human carcinomas. Hum Pathol. 2004; 35(1): 122–8. doi:10.1016/j.humpath.2003.08.026.; Assi J., Srivastava G., Matta A., MacMillan C., Ralhan R., Walfsh P.G. Nuclear Ep-ICD expression is a predictor of poor prognosis in “low risk” prostate adenocarcinomas. PLoS One. 2015; 10(2). doi:10.1371/journal.pone.0107586.; Ralhan R., He H.C., So A.K., Tripathi S.C., Kumar M., Hasan M.R., Kaur J., Kashat L., MacMillan C., Chauhan S.S., Freeman J.L., Walfsh P.G. Nuclear and cytoplasmic accumulation of Ep-ICD is frequently detected in human epithelial cancers. PLoS One. 2010; 5(11). doi:10.1371/journal.pone.0014130.; Fan Q., Cheng J.C., Qiu X., Chang H.M., Leung P.C. EpCAM is up-regulated by EGF via ERK1/2 signaling and suppresses human epithelial ovarian cancer cell migration. Biochem Biophys Res Commun. 2015; 457(3): 256–61. doi:10.1016/j.bbrc.2014.12.097.; Spizzo G., Went P., Dirnhofer S., Obrist P., Simon R., Spichtin H., Maurer R., Metzger U., von Castelberg B., Bart R., Stopatschinskaya S., Köchli O.R., Haas P., Mross F., Zuber M., Dietrich H., Bischoff S., Mirlacher M., Sauter G., Gastl G. High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat. 2004; 86(3): 207–13. doi:10.1023/B:BREA.0000036787.59816.01.; Spizzo G., Went P., Dirnhofer S., Obrist P., Moch H., Baeuerle P.A., Mueller-Holzner E., Marth C., Gastl G., Zeimet A.G. Overexpression of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer. Gynecol Oncol. 2006; 103(2): 483–8. doi:10.1016/j.ygyno.2006.03.035.; Somasundaram R.T., Kaur J., Leong I., MacMillan C., Witterick I.J., Walfsh P.G., Ralhan R. Subcellular diferential expression of Ep-ICD in oral dysplasia and cancer is associated with disease progression and prognosis. BMC Cancer. 2016; 16. doi:10.1186/s12885-016-2507-7.; Kunavisarut T., Kak I., Macmillan C., Ralhan R., Walfsh P.G. Immunohistochemical analysis based Ep-ICD subcellular localization index (ESLI) is a novel marker for metastatic papillary thyroid microcarcinoma. BMC Cancer. 2012; 12. doi:10.1186/1471-2407-12-523.; Srivastava G., Assi J., Kashat L., Matta A., Chang M., Walfsh P.G., Ralhan R. Nuclear Ep-ICD accumulation predicts aggressive clinical course in early stage breast cancer patients. BMC Cancer. 2014; 14. doi:10.1186/1471-2407-14-726.; Songun I., Litvinov S.V., van de Velde C.J., Pals S.T., Hermans J., van Krieken J.H. Loss of Ep-CAM (CO17-1A) expression predicts survival in patients with gastric cancer. Br J Cancer. 2005; 92(9): 1767–72. doi:10.1038/sj.bjc.6602519.; Kim Y., Kim H.S., Cui Z.Y., Lee H.S., Ahn J.S., Park C.K., Park K., Ahn M.J. Clinicopathological implications of EpCAM expression in adenocarcinoma of the lung. Anticancer Res. 2009; 29(5): 1817–22.; Kimura H., Kato H., Faried A., Sohda M., Nakajima M., Fukai Y., Miyazaki T., Masuda N., Fukuchi M., Kuwano H. Prognostic signifcance of EpCAM expression in human esophageal cancer. Int J Oncol. 2007; 30(1): 171–9.; Stoecklein N.H., Siegmund A., Scheunemann P., Luebke A.M., Erbersdobler A., Verde P.E., Eisenberger C.F., Peiper M., Rehders A., Esch J.S., Knoefel W.T., Hosch S.B. Ep-CAM expression in squamous cell carcinoma of the esophagus: a potential therapeutic target and prognostic marker. BMC Cancer. 2006; 6. doi:10.1186/1471-2407-6-165.; Osta W.A., Chen Y., Mikhitarian K., Mitas M., Salem M., Hannun Y.A., Cole D.J., Gillanders W.E. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res. 2004; 64(16): 5818–24. doi:10.1158/0008-5472.CAN-04-0754.; Soysal S.D., Muenst S., Barbie T., Fleming T., Gao F., Spizzo G., Oertli D., Viehl C.T., Obermann E.C., Gillanders W.E. EpCAM expression varies signifcantly and is diferentially associated with prognosis in the luminal B HER2(+), basal-like, and HER2 intrinsic subtypes of breast cancer. Br J Cancer. 2013; 108(7): 1480–7. doi:10.1038/bjc.2013.80.; de Wit S., Manicone M., Rossi E., Lampignano R., Yang L., Zill B., Rengel-Puertas A., Ouhlen M., Crespo M., Berghuis A.M.S., Andree K.C., Vidotto R., Trapp E.K., Tzschaschel M., Colomba E., Fowler G., Flohr P., Rescigno P., Fontes M.S., Zamarchi R., Fehm T., Neubauer H., Rack B., Alunni-Fabbroni M., Farace F., De Bono J., IJzerman M.J., Terstappen L.W.M.M. EpCAMhigh and EpCAMlow circulating tumor cells in metastatic prostate and breast cancer patients. Oncotarget. 2018; 9(86): 35705–16. doi:10.18632/oncotarget.26298.; Frederick B.A., Helfrich B.A., Coldren C.D., Zheng D., Chan D., Bunn P.A. Jr, Raben D. Epithelial to mesenchymal transition predicts geftinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Mol Cancer Ther. 2007; 6(6): 1683–91. doi:10.1158/1535-7163.MCT-07-0138.; Santisteban M., Reiman J.M., Asiedu M.K., Behrens M.D., Nassar A., Kalli K.R., Haluska P., Ingle J.N., Hartmann L.C., Manjili M.H., Radisky D.C., Ferrone S., Knutson K.L. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res; 69(7): 2887–95. doi:10.1158/0008-5472.CAN-08-3343.; de Wit S., van Dalum G., Lenferink A.T., Tibbe A.G., Hiltermann T.J., Groen H.J., van Rijn C.J., Terstappen L.W. The detection of EpCAM(+) and EpCAM(-) circulating tumor cells. Sci Rep. 2015; 5. doi:10.1038/srep12270.; Nicolazzo C., Gradilone A., Loreni F., Raimondi C., Gazzaniga P. EpCAMlow Circulating Tumor Cells: Gold in the Waste. Dis Markers. 2019. doi:10.1155/2019/1718920.; Miki Y., Yashiro M., Okuno T., Kitayama K., Tamura T., Toyokawa T., Tanaka H., Muguruma K., Hirakawa K., Ohira M. Clinical signifcance of EpCAM-negative and CEA-positive circulating tumor cells in gastric carcinoma. Cancer Research. 2017; 77(13). doi:10.1158/1538-7445.AM2017-3791.; Wen K.C., Sung P.L., Chou Y.T., Pan C.M., Wang P.H., Lee O.K., Wu C.W. The role of EpCAM in tumor progression and the clinical prognosis of endometrial carcinoma. Gynecol Oncol. 2018; 148(2): 383–92. doi:10.1016/j.ygyno.2017.11.033.; Gazzaniga P., Raimondi C., Gradilone A., Di Seri M., Longo F., Cortesi E., Frati L. Circulating tumor cells, colon cancer and bevacizumab: the meaning of zero. Ann Oncol. 2011; 22(8): 1929–30. doi:10.1093/annonc/mdr292.; Mego M., De Giorgi U., Dawood S., Wang X., Valero V., Andreopoulou E., Handy B., Ueno N.T., Reuben J.M., Cristofanilli M. Characterization of metastatic breast cancer patients with nondetectable circulating tumor cells. Int J Cancer. 2011; 129(2): 417–23. doi:10.1002/ijc.25690.; Lustberg M.B., Balasubramanian P., Miller B., Garcia-Villa A., Deighan C., Wu Y., Carothers S., Berger M., Ramaswamy B., Macrae E.R., Wesolowski R., Layman R.M., Mrozek E., Pan X., Summers T.A., Shapiro C.L., Chalmers J.J. Heterogeneous atypical cell populations are present in blood of metastatic breast cancer patients. Breast Cancer Res. 2014; 16(2). doi:10.1186/bcr3622.; Satelli A., Brownlee Z., Mitra A., Meng Q.H., Li S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem. 2015; 61(1): 259–66. doi:10.1373/clinchem.2014.228122.; Steinert G., Schölch S., Niemietz T., Iwata N., García S.A., Behrens B., Voigt A., Kloor M., Benner A., Bork U., Rahbari N.N., Büchler M.W., Stoecklein N.H., Weitz J., Koch M. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res. 2014; 74(6): 1694–704. doi:10.1158/0008-5472.CAN-13-1885.; Scheunemann P., Stoecklein N.H., Hermann K., Rehders A., Eisenberger C.F., Knoefel W.T., Hosch S.B. Occult disseminated tumor cells in lymph nodes of patients with gastric carcinoma. A critical appraisal of assessment and relevance. Langenbecks Arch Surg. 2009; 394(1): 105–13. doi:10.1007/s00423-008-0369-4.; Went P., Dirnhofer S., Salvisberg T., Amin M.B., Lim S.D., Diener P.A., Moch H. Expression of epithelial cell adhesion molecule (EpCam) in renal epithelial tumors. Am J Surg Pathol. 2005; 29(1): 83–8. doi:10.1097/01.pas.0000.146028.70868.7a.; Cimino A., Halushka M., Illei P., Wu X., Sukumar S., Argani P. Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res Treat. 2010; 123(3): 701–8. doi:10.1007/s10549-009-0671-z.; Massoner P., Thomm T., Mack B., Untergasser G., Martowicz A., Bobowski K., Klocker H., Gires O., Puhr M. EpCAM is overexpressed in local and metastatic prostate cancer, suppressed by chemotherapy and modulated by MET-associated miRNA-200c/205. Br J Cancer. 2014; 111(5): 955–64. doi:10.1038/bjc.2014.366.; Bellone S., Siegel E.R., Cocco E., Cargnelutti M., Silasi D.A., Azodi M., Schwartz P.E., Rutherford T.J., Pecorelli S., Santin A.D. Overexpression of epithelial cell adhesion molecule in primary, metastatic, and recurrent/chemotherapy-resistant epithelial ovarian cancer: implications for epithelial cell adhesion molecule-specifc immunotherapy. Int J Gynecol Cancer. 2009; 19(5): 860–6. doi:10.1111/IGC.0b013e3181a8331f.; Jojović M., Adam E., Zangemeister-Wittke U., Schumacher U. Epithelial glycoprotein-2 expression is subject to regulatory processes in epithelial-mesenchymal transitions during metastases: an investigation of human cancers transplanted into severe combined immunodefcient mice. Histochem J. 1998; 30(10): 723–9. doi:10.1023/a:1003486630314.; https://www.siboncoj.ru/jour/article/view/3277
-
7Academic Journal
Συγγραφείς: A. A. Petrova, S. I. Samoylova, L. V. Magomedkerimova, S. A. Parts, I. V. Reshetov, А. А. Петрова, С. И. Самойлова, Л. В. Магомедкеримова, С. А. Партс, И. В. Решетов
Πηγή: Siberian journal of oncology; Том 22, № 6 (2023); 130-137 ; Сибирский онкологический журнал; Том 22, № 6 (2023); 130-137 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-0-31-36
Θεματικοί όροι: органы головы и шеи, β-catenin, squamous cell carcinoma, carcinoma, epithelial-mesenchymal transition, prognostic factor, head and neck organs, β-катенин, плоскоклеточный рак, карцинома, эпителиально-мезенхимальный переход, прогноз
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2843/1188; Болотина Л.В., Владимирова Л.Ю., Деньгина Н.В., Новик А.В., Романов И.С. Практические рекомендации по лечению злокачественных опухолей головы и шеи. Злокачественные опухоли. 2022; 12(3s2-1): 94–112. [Bolotina L.V., Vladimirova L.Yu., Den’gina N.V., Novik A.V., Romanov I.S. Guidlines for treatment of head and neck malignant tumours. Malignant tumours. 2022; 12(3s2-1): 94–112. (in Russian)]. doi:10.18027/2224-5057-2022-12-3s2-94-112.; Guo K., Xiao W., Chen X., Zhao Z., Lin Y., Chen G. Epidemiological Trends of Head and Neck Cancer: A Population-Based Study. Biomed Res Int. 2021. doi:10.1155/2021/1738932. Erratum in: Biomed Res Int.; Tumban E. A Current Update on Human PapillomavirusAssociated Head and Neck Cancers. Viruses. 2019; 11(10): 922. doi:10.3390/v11100922.; Caudell J.J., Gillison M.L., Maghami E., Spencer S., Pfster D.G., Adkins D., Birkeland A.C., Brizel D.M., Busse P.M., Cmelak A.J., Colevas A.D., Eisele D.W., Galloway T., Geiger J.L., Haddad R.I., Hicks W.L., Hitchcock Y.J., Jimeno A., Leizman D., Mell L.K., Mittal B.B., Pinto H.A., Rocco J.W., Rodriguez C.P., Savvides P.S., Schwartz D., Shah J.P., Sher D., St John M., Weber R.S., Weinstein G., Worden F., Yang Bruce J., Yom S.S., Zhen W., Burns J.L., Darlow S.D. NCCN Guidelines® Insights: Head and Neck Cancers, Version 1.2022. J Natl Compr Canc Netw. 2022; 20(3): 224–34. doi:10.6004/jnccn.2022.0016.; Zhang Y., Weinberg R.A. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018; 12(4): 361–73. doi:10.1007/s11684-018-0656-6.; Pastushenko I., Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019; 29(3): 212–26. doi:10.1016/j.tcb.2018.12.001.; Siqueira J.M., Heguedusch D., Rodini C.O., Nunes F.D., Rodrigues M.F.S.D. Mechanisms involved in cancer stem cell resistance in head and neck squamous cell carcinoma. Cancer Drug Resist. 2023; 6(1): 116–37. doi:10.20517/cdr.2022.107.; Pan G., Liu Y., Shang L., Zhou F., Yang S. EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond). 2021; 41(3): 199–217. doi:10.1002/cac2.12138.; Scanlon C.S., Van Tubergen E.A., Inglehart R.C., D’Silva N.J. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res. 2013; 92(2): 114–21. doi:10.1177/0022034512467352.; Pal A., Barrett T.F., Paolini R., Parikh A., Puram S.V. Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene. 2021; 40(32): 5049–65. doi:10.1038/s41388-021-01868-5.; Qian X., Nie X., Wollenberg B., Sudhoff H., Kaufmann A.M., Albers A.E. Heterogeneity of Head and Neck Squamous Cell Carcinoma Stem Cells. Adv Exp Med Biol. 2019; 1139: 23–40. doi:10.1007/978-3-030-14366-4_2.; Bornes L., Belthier G., van Rheenen J. Epithelial-to-Mesenchymal Transition in the Light of Plasticity and Hybrid E/M States. J Clin Med. 2021; 10(11): 2403. doi:10.3390/jcm10112403.; Peinado H., Olmeda D., Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007; 7(6): 415–28. doi:10.1038/nrc2131.; Masui T., Ota I., Yook J.I., Mikami S., Yane K., Yamanaka T., Hosoi H. Snail-induced epithelial-mesenchymal transition promotes cancer stem cell-like phenotype in head and neck cancer cells. Int J Oncol. 2014; 44(3): 693–9. doi:10.3892/ijo.2013.2225.; Ota I., Masui T., Kurihara M., Yook J.I., Mikami S., Kimura T., Shimada K., Konishi N., Yane K., Yamanaka T., Kitahara T. Snail-induced EMT promotes cancer stem cell-like properties in head and neck cancer cells. Oncol Rep. 2016; 35(1): 261–6. doi:10.3892/or.2015.4348.; Soleymani L., Zarrabi A., Hashemi F., Hashemi F., Zabolian A., Banihashemi S.M., Moghadam S.S., Hushmandi K., Samarghandian S., Ashrafzadeh M., Khan H. Role of ZEB Family Members in Proliferation, Metastasis, and Chemoresistance of Prostate Cancer Cells: Revealing Signaling Networks. Curr Cancer Drug Targets. 2021; 21(9): 749–67. doi:10.2174/1568009621666210601114631.; Yazdani J., Ghavimi M.A., Jabbari Hagh E., Ahmadpour F. The Role of E-Cadherin as a Prognostic Biomarker in Head and Neck Squamous Carcinoma: A Systematic Review and MetaAnalysis. Mol Diagn Ther. 2018; 22(5): 523–35. doi:10.1007/ s40291-018-0351-y.; Kumar V., Panda A., Dash K.C., Bhuyan L., Mahapatra N., Mishra P. Immunohistochemical Expression of the Epithelial to Mesenchymal Transition Proteins E-cadherin and ß-catenin in Grades of Oral Squamous Cell Carcinoma. J Pharm Bioallied Sci. 2021; 13(Suppl 1): 555–60. doi:10.4103/jpbs.JPBS_562_20.; Liu L.K., Jiang X.Y., Zhou X.X., Wang D.M., Song X.L., Jiang H.B. Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod Pathol. 2010; 23(2): 213–24. doi:10.1038/modpathol.2009.160.; Ling Z., Cheng B., Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer. 2021; 148(7): 1548–61. doi:10.1002/ijc.33352.; Na T.Y., Schecterson L., Mendonsa A.M., Gumbiner B.M. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci U S A. 2020; 117(11): 5931–7. doi:10.1073/pnas.1918167117.; Goyal N., Singh M., Sagar N., Khurana N., Singh I. Association of E-cadherin & vimentin expression with clinicopathological parameters in lingual squamous cell carcinomas & their role in incomplete epithelial mesenchymal transition. Indian J Med Res. 2021; 153(4): 484–91. doi:10.4103/ijmr.IJMR_1409_18.; Greco A., De Virgilio A., Rizzo M.I., Pandolf F., Rosati D., de Vincentiis M. The prognostic role of E-cadherin and β-catenin overexpression in laryngeal squamous cell carcinoma. Laryngoscope. 2016; 126(4): 148–55. doi:10.1002/lary.25736.; Zhao Z., Ge J., Sun Y., Tian L., Lu J., Liu M., Zhao Y. Is E-cadherin immunoexpression a prognostic factor for head and neck squamous cell carcinoma (HNSCC)? A systematic review and meta-analysis. Oral Oncol. 2012; 48(9): 761–7. doi:10.1016/j.oraloncology.2012.02.024.; Nambiyar K., Ahuja A., Bhardwaj M. A study of epithelial-mesenchymal transition immunohistochemical markers in primary oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021; 132(6): 680–6. doi:10.1016/j.oooo.2021.05.016.; Ukpo O.C., Thorstad W.L., Zhang Q., Lewis J.S. Lack of association of cadherin expression and histopathologic type, metastasis, or patient outcome in oropharyngeal squamous cell carcinoma: a tissue microarray study. Head Neck Pathol. 2012; 6(1): 38–47. doi:10.1007/s12105-011-0306-7.; Ueda G., Sunakawa H., Nakamori K., Shinya T., Tsuhako W., Tamura Y., Kosugi T., Sato N., Ogi K., Hiratsuka H. Aberrant expression of beta- and gamma-catenin is an independent prognostic marker in oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2006; 35(4): 356–61. doi:10.1016/j.ijom.2005.07.023.; Dumitru C.S., Ceausu A.R., Comsa S., Raica M. Loss of E-Cadherin Expression Correlates With Ki-67 in Head and Neck Squamous Cell Carcinoma. In Vivo. 2022; 36(3): 1150–4. doi:10.21873/invivo.12814.; Stenner M., Yosef B., Huebbers C.U., Preuss S.F., Dienes H.P., Speel E.J., Odenthal M., Klussmann J.P. Nuclear translocation of β-catenin and decreased expression of epithelial cadherin in human papillomavirus-positive tonsillar cancer: an early event in human papillomavirus-related tumour progression? Histopathology. 2011; 58(7): 1117–26. doi:10.1111/j.1365-2559.2011.03805.x.; Ozawa M., Baribault H., Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in diferent species. EMBO J. 1989; 8(6): 1711–7. doi:10.1002/j.1460-2075.1989.tb03563.x.; Huber A.H., Nelson W.J., Weis W.I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell. 1997; 90(5): 871–82. doi:10.1016/s0092-8674(00)80352-9.; Krishnamurthy N., Kurzrock R. Targeting the Wnt/betacatenin pathway in cancer: Update on efectors and inhibitors. Cancer Treat Rev. 2018; 62: 50–60. doi:10.1016/j.ctrv.2017.11.002.; Paluszczak J. The Signifcance of the Dysregulation of Canonical Wnt Signaling in Head and Neck Squamous Cell Carcinomas. Cells. 2020; 9(3): 723. doi:10.3390/cells9030723.; He T.C., Sparks A.B., Rago C., Hermeking H., Zawel L., da Costa L.T., Morin P.J., Vogelstein B., Kinzler K.W. Identifcation of c-MYC as a target of the APC pathway. Science. 1998; 281(5382): 1509–12. doi:10.1126/science.281.5382.1509.; Kartha V.K., Alamoud K.A., Sadykov K., Nguyen B.C., Laroche F., Feng H., Lee J., Pai S.I., Varelas X., Egloff A.M., Snyder-Cappione J.E., Belkina A.C., Bais M.V., Monti S., Kukuruzinska M.A. Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer. Genome Med. 2018; 10(1): 54. doi:10.1186/s13073-018 -0569-7.; Moon J.H., Lee S.H., Lim Y.C. Wnt/β-catenin/Slug pathway contributes to tumor invasion and lymph node metastasis in head and neck squamous cell carcinoma. Clin Exp Metastasis. 2021; 38(2): 163–74. doi:10.1007/s10585-021-10081-3.; Matly A., Quinn J.A., McMillan D.C., Park J.H., Edwards J. The relationship between β-catenin and patient survival in colorectal cancer systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021; 163. doi:10.1016/j.critrevonc.2021.103337.; Flach S., Kumbrink J., Walz C., Hess J., Drexler G., Belka C., Canis M., Jung A., Baumeister P. Analysis of genetic variants of frequently mutated genes in human papillomavirusnegative primary head and neck squamous cell carcinoma, resection margins, local recurrences and corresponding circulating cell-free DNA. J Oral Pathol Med. 2022; 51(8): 738–46. doi:10.1111/jop.13338.; Rapado-González Ó., Brea-Iglesias J., Rodríguez-Casanova A., Bao-Caamano A., López-Cedrún J.L., Triana-Martínez G., Díaz-Peña R., Santos M.A., López-López R., Muinelo-Romay L., Martínez-Fernández M., Díaz-Lagares Á., Suárez-Cunqueiro M.M. Somatic mutations in tumor and plasma of locoregional recurrent and/or metastatic head and neck cancer using a next-generation sequencing panel: A preliminary study. Cancer Med. 2023; 12(6): 6615–22. doi:10.1002/cam4.5436.; Devaraja K., Aggarwal S., Verma S.S., Gupta S.C. Clinicopathological peculiarities of human papilloma virus driven head and neck squamous cell carcinoma: A comprehensive update. Life Sci. 2020; 245. doi:10.1016/j.lfs.2020.117383.; Hu Z., Müller S., Qian G., Xu J., Kim S., Chen Z., Jiang N., Wang D., Zhang H., Saba N.F., Shin D.M., Chen Z.G. Human papillomavirus 16 oncoprotein regulates the translocation of β-catenin via the activation of epidermal growth factor receptor. Cancer. 2015; 121(2): 214–25. doi:10.1002/cncr.29039.; Ledinek Ž., Sobočan M., Knez J. The Role of CT-NNB1 in Endometrial Cancer. Dis Markers. 2022. doi:10.1155/2022/1442441.; Xu C., Xu Z., Zhang Y., Evert M., Calvisi D.F., Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest. 2022; 132(4). doi:10.1172/JCI154515.; Wang X., Li R., Wu L., Chen Y., Liu S., Zhao H., Wang Y., Wang L., Shao Z. Histone methyltransferase KMT2D cooperates with MEF2A to promote the stem-like properties of oral squamous cell carcinoma. Cell Biosci. 2022; 12(1): 49. doi:10.1186/s13578-022-00785-8.; Friedl P., Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011; 147(5): 992–1009. doi:10.1016/j.cell.2011.11.016.; https://www.siboncoj.ru/jour/article/view/2843
-
8Academic Journal
Συγγραφείς: M. A. Boldyshevskaya, L. A. Tashireva, E. S. Andryukhova, T. A. Dronova, S. V. Vtorushin, V. M. Perelmuter, М. А. Болдышевская, Л. А. Таширева, Е. С. Андрюхова, Т. А. Дронова, С. В. Вторушин, В. М. Перельмутер
Συνεισφορές: The study was supported by the Russian Foundation for Basic Research (project No. 23-15-00135)., Работа выполнена при финансовой поддержке гранта Российского научного фонда (№ 23-15-00135).
Πηγή: Advances in Molecular Oncology; Том 10, № 4 (2023); 76-85 ; Успехи молекулярной онкологии; Том 10, № 4 (2023); 76-85 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-4
Θεματικοί όροι: апоптоз, malignant neoplasms, epithelial-mesenchymal transition, apoptosis, злокачественные новообразования, эпителиально-мезенхимальный переход
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/611/328; Jacob J., Coulombe P., Kwan R. et al. Types I and II keratin intermediate filaments. Cold Spring Harb Perspect Biol 2018;10(4):a018275. DOI:10.1101/cshperspect.a018275; Moll R., Divo M., Langbein L. The human keratins: biology and pathology. Histochem Cell Biol 2008;129(6):705–33. DOI:10.1007/s00418-008-0435-6; Werner S., Keller L., Pantel K. Epithelial keratins: biology and implications as diagnostic markers for liquid biopsies. Mol Aspects Med 2020;72(5):100817. DOI:10.1016/j.mam.2019.09.001; Karantza V. Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 2011;30(2):127–38. DOI:10.1038/onc.2010.456; Ho M., Thompson B., Fisk J. et al. Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Hum Genomics 2022;16(1):1–21. DOI:10.1186/s40246-021-00374-9; Komine M., Freedberg I., Blumenberg M. Regulation of epidermal expression of keratin K17 in inflammatory skin diseases. J Invest Dermatol 1996;107(4):569–75. DOI:10.1111/1523-1747.ep12582820; Komine M., Rao L., Kaneko T. et al. Inflammatory versus proliferative processes in epidermis. Tumor necrosis factor alpha induces K6b keratin synthesis through a transcriptional complex containing NFkappa B and C/EBPbeta. J Biol Chem 2000;275(41):32077–88. DOI:10.1074/jbc.M001253200; Völkel C., De Wispelaere N., Weidemann S. et al. Cytokeratin 5 and cytokeratin 6 expressions are unconnected in normal and cancerous tissues and have separate diagnostic implications. Virchows Arch 2022;480(2):433–47. DOI:10.1007/s00428-021-03204-4; Coulombe P., Fuchs E. Elucidating the early stages of keratin filament assembly. J Cell Biol 1990;111(1):153–69. DOI:10.1083/jcb.111.1.153; Inaba Y., Chauhan V., van Loon A.P. et al. Keratins and the plakin family cytolinker proteins control the length of epithelial microridge protrusions. Elife 2020;9:e58149. DOI:10.7554/eLife.58149; Windoffer R., Beil M., Magin T. et al. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J Cell Biol 2011;194(5):669–78. DOI:10.1083/jcb.201008095; Snider N., Omary M. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 2014;15(3):163–77. DOI:10.1038/nrm3753; Hrudka J., Fišerová H., Jelínková K. et al. Cytokeratin 7 expression as a predictor of an unfavorable prognosis in colorectal carcinoma. Sci Rep 2021;11(1):17863. DOI:10.1038/s41598-021-97480-4; Dum D., Menz A., Völkel C. et al. Cytokeratin 7 and cytokeratin 20 expression in cancer: a tissue microarray study on 15,424 cancers. Exp Mol Pathol 2022;126:104762. DOI:10.1016/j.yexmp.2022.104762; Han W., Hu C., Fan Z.J. et al. Transcript levels of keratin 1/5/6/14/15/16/17 as potential prognostic indicators in melanoma patients. Sci Rep 2021;11(1):1023. DOI:10.1038/s41598-020-80336-8; Weng Y., Cui Y., Fang J. Biological functions of cytokeratin 18 in cancer. Mol Cancer Res 2012;10(4):485–93. DOI:10.1158/1541-7786.MCR-11-0222; Willms A., Schupp H., Poelker M. et al. TRAIL-receptor 2 — a novel negative regulator of p53. Cell Death Dis 2021;12(8):757. DOI:10.1038/s41419-021-04048-1; Bozza W., Zhang Y., Zhang B. Cytokeratin 8/18 protects breast cancer cell lines from TRAIL-induced apoptosis. Oncotarget 2018;9(33):23264–73. DOI:10.18632/oncotarget.25297; Ku N., Omary M. A disease- and phosphorylation-related nonmechanical function for keratin 8. J Cell Biol 2006;174(1): 115–25. DOI:10.1083/jcb.200602146; Chen Y., Lin S., Chang W. et al. Requirement for ERK activation in acetone extract identified from Bupleurrum scorzonerifolium induced A549 tumor cell apoptosis and keratin 8 phosphorylation. Life Sci 2005;76(21):2409–20. DOI:10.1016/j.lfs.2004.09.044; Arentz G., Chataway T., Condina M. et al. Increased phospho-keratin 8 isoforms in colorectal tumors associated with EGFR pathway activation and reduced apoptosis. ISRN Mol Biol 2012;706545. DOI:10.5402/2012/706545; Zeng Y., Zou M., Liu Y. et al. Keratin 17 suppresses cell proliferation and epithelial-mesenchymal transition in pancreatic cancer. Front Med 2020;7:572494. DOI:10.3389/fmed.2020.572494; Weerasinghe S., Ku N., Altshuler P. et al. Mutation of caspase- digestion sites in keratin 18 interferes with filament reorganization, and predisposes to hepatocyte necrosis and loss of membrane integrity. J Cell Sci 2014;127(Pt. 7):1464–75. DOI:10.1242/jcs.138479; Chen J., Cheng X., Merched-Sauvage M. et al. An unexpected role for keratin 10 end domains in susceptibility to skin cancer. J Cell Sci2006;119(Pt. 24):5067–76. DOI:10.1242/jcs.03298; Alam H., Gangadaran P., Bhate A.V. et al. Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients. PLoS One 2011;6(11):e27767. DOI:10.1371/journal.pone.0027767; McGinn O., Ward A., Fettig L. et al. Cytokeratin 5 alters β-catenin dynamics in breast cancer cells. Oncogene 2020;39(12):2478–92. DOI:10.1038/s41388-020-1164-0; Meng Y., Wu Z., Yin X. et al. Keratin 18 attenuates estrogen receptor alpha-mediated signaling by sequestering LRP16 in cytoplasm. BMC Cell Biol 2009;10:96. DOI:10.1186/1471-2121-10-96; Kawai T., Yasuchika K., Ishii T. et al. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin Cancer Res 2015;21(13):3081–91. DOI:10.1158/1078-0432.CCR-14-1936; Sharma P., Tiufekchiev S., Lising V. et al. Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3. Mol Biol Cell 2021;32(21):ar21. DOI:10.1091/mbc.E21-05-0255; Tsai F., Lai M., Cheng J. et al. Novel K6-K14 keratin fusion enhances cancer stemness and aggressiveness in oral squamous cell carcinoma. Oncogene 2019;38(26):5113–26. DOI:10.1038/s41388-019-0781-y; Elazezy M., Schwentesius S., Stegat L. et al. Emerging insights into keratin 16 expression during metastatic progression of breast cancer. Cancers 2021;13(15):3869. DOI:10.3390/cancers13153869; Yuanhua L., Pudong Q., Wei Z. et al. TFAP2A induced KRT16 as an oncogene in lung adenocarcinoma via EMT. Int J Biol Sci 2019;15(7):1419–28. DOI:10.7150/ijbs.34076; Ghosh D., Hsu J., Soriano K. et al. Spatial heterogeneity in cytoskeletal mechanics response to TGF-β1 and hypoxia mediates partial epithelial-to-meshenchymal transition in epithelial ovarian cancer cells. Cancers (Basel) 2023;15(12):3186. DOI:10.3390/cancers15123186.; Hyejung J., Bomin K., Byung M. et al. Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial–mesenchymal transition in breast epithelial cells. Mol Cell Biochem 2016;423(1–2):21–8. DOI:10.1007/s11010-016-2818-7; Ren M., Gao Y., Chen Q. et al. The Overexpression of keratin 23 promotes migration of ovarian cancer via epithelial-mesenchymal transition. Biomed Res Int 2020;2020:1–12. DOI:10.1155/2020/8218735; Shi R., Liu L., Wang F. et al. Downregulation of cytokeratin 18 induces cellular partial EMT and stemness through increasing EpCAM expression in breast cancer. Cell Signal 2020;76:109810. DOI:10.1016/j.cellsig.2020.109810; Shi R., Wang C., Fu N. et al. Downregulation of cytokeratin 18 enhances BCRP-mediated multidrug resistance through induction of epithelial-mesenchymal transition and predicts poor prognosis in breast cancer. Oncol Rep 2019;41(5):3015–26. DOI:10.3892/or.2019.7069; Fortier A., Asselin E., Cadrin M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J Biol Chem 2013;288(16):11555–71. DOI:10.1074/jbc.M112.428920; Obermajer N., Doljak B., Kos J. Cytokeratin 8 ectoplasmic domain binds urokinase-type plasminogen activator to breast tumor cells and modulates their adhesion, growth and invasiveness. Mol Cancer 2009;8:88. DOI:10.1186/1476-4598-8-88; Wang Z., Yang M., Lei L. et al. Overexpression of KRT17 promotes proliferation and invasion of non-small cell lung cancer and indicates poor prognosis. Cancer Manag Res 2019;11:7485–97. DOI:10.2147/CMAR.S218926; Wu X., Xiao J., Zhao C. et al. Claudin1 promotes the proliferation, invasion and migration of nasopharyngeal carcinoma cells by upregulating the expression and nuclear entry of β-catenin. Exp Ther Med 2018;16(4):3445–51. DOI:10.3892/etm.2018.6619; Lam V., Sharma P., Nguyen T. et al. Morphology, motility, and cytoskeletal architecture of breast cancer cells depend on keratin 19 and substrate. Cytometry A 2020;97(11):1145–55. DOI:10.1002/cyto.a.24011; Alsharif S., Sharma P., Bursch K. et al. Keratin 19 maintains E-cadherin localization at the cell surface and stabilizes cell-cell adhesion of MCF7 cells. Cell Adh Migr 2021;15(1):1–17. DOI:10.1080/19336918.2020.1868694; Saha S., Kim K., Yang G. et al. Cytokeratin 19 (KRT19) has a role in the reprogramming of cancer stem cell-like cells to less aggressive and more drug-sensitive cells. Int J Mol Sci 2018;19(5):1423–44. DOI:10.3390/ijms19051423; Ricciardelli C., Lokman N., Pyragius C. et al. Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance. Oncotarget 2017;8(11):17819–32. DOI:10.18632/oncotarget.14867; Wang P., Chen Y., Ding G. et al. Keratin 18 (KRT18) induces proliferation, migration, and invasion in gastric cancer via the MAPK signaling pathway. Clin Exp Pharmacol 2020;48(1):147–56. DOI:10.1111/1440-1681.13401; https://umo.abvpress.ru/jour/article/view/611
-
9Academic Journal
Συγγραφείς: D. Zh. Mansorunov, F. M. Kipkeeva, T. A. Muzaffarova, M. P. Nikulin M.P., O. A. Malikhova, N. V. Apanovich, A. A. Alimov, Д. Ж. Мансорунов, Ф. М. Кипкеева, Т. А. Музаффарова, М. П. Никулин, О. А. Малихова, Н. В. Апанович, А. А. Алимов
Συνεισφορές: The research was carried out within the state assignment and funding of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова».
Πηγή: Medical Genetics; Том 22, № 6 (2023); 24-31 ; Медицинская генетика; Том 22, № 6 (2023); 24-31 ; 2073-7998
Θεματικοί όροι: микросателлитная нестабильность, expression, gastric cancer, immune checkpoint, epithelial-mesenchymal transition, microsatellite instability, экспрессия, рак желудка, иммунные контрольные точки, эпителиально-мезенхимальный переход
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2318/1719; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May 4;71(3):209–249.; Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. Каприна А.Д., Старинского В.В., Шахзадовой А.О. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2022.; Бесова Н.С., Болотина Л.В., Гамаюнов С.В. и др. Практические рекомендации по лекарственному лечению рака желудка. Злокачественные опухоли. 2022 Dec 24;12(3s2-1):382–400.; The Cancer Genome Atlas Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-209.; Cristescu R, Lee J, Nebozhyn M et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015 May 20;21(5):449–456.; Prescribing information for KEYTRUDA® (pembrolizumab). https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/125514s128lbl.pdf; Ratti M., Lampis A., Hahne J.C. et al. Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci. 2018 Nov 1;75(22):4151– 4162.; Kang F.B., Wang L., Jia H.C. et al. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-tomesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int. 2015 Apr 21;15(45).; Wang Y., Wang H., Zhao Q. et al. PD-L1 induces epithelial-tomesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med Oncol. 2015 Aug;32(8):212.; Ock C.Y., Kim S., Keam B. et al. PD-L1 expression is associated with epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Oncotarget. 2016 Mar 29;7(13):15901–15914.; Xu D., Li J., Li R. et al. PD-L1 Expression Is Regulated By NF-κB During EMT Signaling In Gastric Carcinoma. Onco Targets Ther. 2019 Nov 25;12:10099–10105.; Goel A., Nagasaka T., Hamelin R., Boland C.R. An Optimized Pentaplex PCR for Detecting DNA Mismatch Repair-Deficient Colorectal Cancers. Najbauer J, editor. PLoS One. 2010 Feb 24;5(2):e9393.; Luchini C., Bibeau F., Ligtenberg M.J.L. et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019 Aug 1;30(8):1232–1243.; Pham Q.T., Taniyama D., Akabane S. et al. Essential Roles of TDO2 in Gastric Cancer: TDO2 Is Associated with Cancer Progression, Patient Survival, PD-L1 Expression, and Cancer Stem Cells. Pathobiology. 2023;90(1):44-55.; Xiao Y., Yang K., Wang Z. et al. CD44-Mediated Poor Prognosis in Glioma Is Associated With M2-Polarization of Tumor-Associated Macrophages and Immunosuppression. Front Surg. 2022 Feb 3;8:775194.; Xu M., Zhou H., Zhang C. et al. ADAM17 promotes epithelialmesenchymal transition via TGF-α/Smad pathway in gastric carcinoma cells. Int J Oncol. 2016 Dec;49(6):2520–2528.; Yang B., Wang C., Xie H. et al. MicroRNA-3163 targets ADAM-17 and enhances the sensitivity of hepatocellular carcinoma cells to molecular targeted agents. Cell Death Dis. 2019 Oct 14;10(10):784.; Zheng Q., Gao J., Yin P. et al. CD155 contributes to the mesenchymal phenotype of triple-negative breast cancer. Cancer Sci. 2020 Feb;111(2):383-394.
-
10Academic Journal
Συγγραφείς: M. S. Ermakov, A. A. Nushtaeva, V. A. Richter, O. A. Koval, М. С. Ермаков, А. А. Нуштаева, В. А. Рихтер, О. А. Коваль
Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 1 (2022); 14-21 ; Вавиловский журнал генетики и селекции; Том 26, № 1 (2022); 14-21 ; 2500-3259 ; 10.18699/VJGB-22-01
Θεματικοί όροι: гипоксия, epithelial-to-mesenchymal transition, carcinoma, hypoxia, эпителиально-мезенхимальный переход, карцинома
Περιγραφή αρχείου: application/pdf
-
11Academic Journal
Συγγραφείς: L. E. Sinyanskiy, N. V. Krakhmal, S. S. Naumov, S. V. Patalyak, S. G. Afanasyev, S. V. Vtorushin, Л. Е. Синянский, Н. В. Крахмаль, С. С. Наумов, С. В. Паталяк, С. Г. Афанасьев, С. В. Вторушин
Συνεισφορές: The reported study was funded by RFBR, project number 20-315-90027., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-315-90027.
Πηγή: Siberian journal of oncology; Том 21, № 4 (2022); 56-63 ; Сибирский онкологический журнал; Том 21, № 4 (2022); 56-63 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-4
Θεματικοί όροι: CDX2, epithelial-mesenchymal transition, FRMD6, ZEB1, HTR2B, эпителиально-мезенхимальный переход
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2243/1017; Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Piñeros M., Znaor A., Bray F. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021. doi:10.1002/ijc.33588.; Состояние онкологической помощи населению России в 2019 году. М., 2020. С. 72–5.; Одинцова И.Н., Черемисина О.В., Писарева Л.Ф., Спивакова И.О., Вусик М.В. Эпидемиология колоректального рака в Томской области. Сибирский онкологический журнал. 2017; 16(4): 89–95. doi:10.21294/1814-4861-2017-16-4-89-95.; Hao Y., Baker D., Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci. 2019; 20(11): 2767. doi:10.3390/ijms20112767.; Karlsson M.C., Gonzalez S.F., Welin J., Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol. 2017; 11(7): 781–91. doi:10.1002/1878-0261.12092.; Erin N., Grahovac J., Brozovic A., Efferth T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat. 2020; 53. doi:10.1016/j.drup.2020.100715.; Xu W., Yang Z., Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr. 2015; 9(4): 317–24. doi:10.1080/19336918.2015.1016686.; Wilson M.M., Weinberg R.A, Lees J.A., Guen V.J. Emerging Mechanisms by which EMT Programs Control Stemness. Trends Cancer. 2020; 6(9): 775–80. doi:10.1016/j.trecan.2020.03.011.; Hapke R.Y., Haake S.M. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett. 2020; 487: 10–20. doi:10.1016/j.canlet.2020.05.012.; Goossens S., Vandamme N., Van Vlierberghe P., Berx G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 2017; 1868(2): 584–91. doi:10.1016/j.bbcan.2017.06.006.; Williams E.D., Gao D., Redfern A., Thompson E.W. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 2019; 19(12): 716–32. doi:10.1038/s41568-019-0213-x.; Feng Y.L., Chen D.Q., Vaziri N.D., Guo Y., Zhao Y.Y. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev. 2020; 40(1): 54–78. doi:10.1002/med.21596.; Kumari N., Reabroi S., North B.J. Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm. 2021; 2021. doi:10.1155/2021/6655417.; Lu Y., Ding Y., Wei J., He S., Liu X., Pan H., Yuan B., Liu Q., Zhang J. Anticancer effects of Traditional Chinese Medicine on epithelial-mesenchymal transition EMT in breast cancer: Cellular and molecular targets. Eur J Pharmacol. 2021; 907. doi:10.1016/j.ejphar.2021.174275.; Dongre A., Weinberg R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019; 20(2): 69–84. doi:10.1038/s41580-018-0080-4.; Valenzuela G., Canepa J., Simonetti C., Solo de Zaldívar L., Marcelain K., González-Montero J. Consensus molecular subtypes of colorectal cancer in clinical practice: A translational approach. World J Clin Oncol. 2021; 12(11): 1000–8. doi:10.5306/wjco.v12.i11.1000.; Roseweir A.K., Kong C.Y., Park J.H., Bennett L., Powell A.G.M.T., Quinn J., van Wyk H.C., Horgan P.G., McMillan D.C., Edwards J., Roxburgh C.S. A novel tumor-based epithelial-to-mesenchymal transition score that associates with prognosis and metastasis in patients with Stage II/III colorectal cancer. Int J Cancer. 2019; 144(1): 150–9. doi:10.1002/ijc.31739.; Синянский Л.Е., Вторушин С.В., Паталяк С.В., Афанасьев С.Г. Прогностическая роль молекулярных подтипов рака толстой кишки. Современный взгляд на проблему. Сибирский онкологический журнал. 2021; 20(3): 107–14. doi:10.21294/1814-4861-2021-20-3-107-114.; Wang F., Sun G., Peng C., Chen J., Quan J., Wu C., Lian X., Tang W., Xiang D. ZEB1 promotes colorectal cancer cell invasion and disease progression by enhanced LOXL2 transcription. Int J Clin Exp Pathol. 2021; 14(1): 9–23.; Soll C., Riener M.O., Oberkofler C.E., Hellerbrand C., Wild P.J., DeOliveira M.L., Clavien P.A. Expression of serotonin receptors in human hepatocellular cancer. Clin Cancer Res. 2012; 18(21): 5902–10. doi:10.1158/1078-0432.CCR-11-1813.; Ebrahimkhani M.R., Oakley F., Murphy L.B., Mann J., Moles A., Perugorria M.J., Ellis E., Lakey A.F., Burt A.D., Douglass A., Wright M.C., White S.A., Jaffré F., Maroteaux L., Mann D.A. Stimulating healthy tissue regeneration by targeting the 5-HT₂B receptor in chronic liver disease. Nat Med. 2011; 17(12): 1668–73. doi:10.1038/nm.2490.; Ye D., Xu H., Tang Q., Xia H., Zhang C., Bi F. The role of 5-HT metabolism in cancer. Biochim Biophys Acta Rev Cancer. 2021; 1876(2). doi:10.1016/j.bbcan.2021.188618.; Yu J., Li S., Xu Z., Guo J., Li X., Wu Y., Zheng J., Sun X. CDX2 inhibits epithelial-mesenchymal transition in colorectal cancer by modulation of Snail expression and β-catenin stabilisation via transactivation of PTEN expression. Br J Cancer. 2021; 124(1): 270–80. doi:10.1038/s41416-020-01148-1.; Gunn-Moore F.J., Welsh G.I., Herron L.R., Brannigan F., Venkateswarlu K., Gillespie S., Brandwein-Gensler M., Madan R., Tavaré J.M., Brophy P.J., Prystowsky M.B., Guild S. A novel 4.1 ezrin radixin moesin (FERM)-containing protein, ‘Willin’. FEBS Lett. 2005; 579(22): 5089–94. doi:10.1016/j.febslet.2005.07.097.; De Sousa E. Melo F., Wang X., Jansen M., Fessler E., Trinh A., de Rooij L.P., de Jong J.H., de Boer O.J., van Leersum R., Bijlsma M.F., Rodermond H., van der Heijden M., van Noesel C.J., Tuynman J.B., Dekker E., Markowetz F., Medema J.P., Vermeulen L. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013; 19(5): 614–8. doi:10.1038/nm.3174.; https://www.siboncoj.ru/jour/article/view/2243
-
12Academic Journal
Συγγραφείς: M. V. Nemtsova, I. V. Bure, D. V. Zaletaev, E. B. Kuznetsova, E. A. Vetchinkina, A. D. Molchanov, М. В. Немцова, И. В. Буре, Д. В. Залетаев, Е. Б. Кузнецова, Е. А. Ветчинкина, А. Д. Молчанов
Πηγή: Medical Genetics; Том 21, № 5 (2022); 3-17 ; Медицинская генетика; Том 21, № 5 (2022); 3-17 ; 2073-7998
Θεματικοί όροι: некодирующие РНК, epithelial-mesenchymal transition (EMT), aberrant gene expression, tumor progression, gastric cancer, noncoding RNAs, эпителиально-мезенхимальный переход (ЭМП), нарушение экспрессии, опухолевая прогрессия, рак желудка
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2177/1644; Canel M., Serrels A., Frame M.C., et al. E-Cadherin-Integrin Crosstalk in Cancer Invasion and Metastasis. J. Cell Sci. 2013;126(Pt 2):393-401. https://doi.org/10.1242/JCS.100115.; Ratheesh A., Yap A.S. A Bigger Picture: Classical Cadherins and the Dynamic Actin Cytoskeleton. Nat. Rev. Mol. Cell Biol. 2012;13(10):673-679. https://doi.org/10.1038/NRM3431.; Aban C.E., Lombardi A., Neiman G., et al. Downregulation of E-Cadherin in Pluripotent Stem Cells Triggers Partial EMT. Sci. Rep. 2021;11(1):. https://doi.org/10.1038/S41598-021-81735-1.; Nieto M.A., Huang R.Y.Y.J., Jackson R.A.A., et al. EMT: 2016. Cell 2016;166(1):21-45. https://doi.org/10.1016/J.CELL.2016.06.028.; Frías A., Lambies G., Viñas-Castells R., et al. A Switch in Akt Isoforms Is Required for Notch-Induced Snail1 Expression and Protection from Cell Death. Mol. Cell. Biol. 2016;36(6):923-940. https://doi.org/10.1128/MCB.01074-15/ASSET/8492B277-4B06-41CF-977E-E5B0BD7AA269/ASSETS/GRAPHIC/ZMB9991011590012.JPEG.; Chen A., Beetham H., Black M.A., et al. E-Cadherin Loss Alters Cytoskeletal Organization and Adhesion in Non-Malignant Breast Cells but Is Insufficient to Induce an Epithelial-Mesenchymal Transition. BMC Cancer 2014;14(1):. https://doi.org/10.1186/1471-2407-14-552.; Hollestelle A., Peeters J.K., Smid M., et al. Loss of E-Cadherin Is Not a Necessity for Epithelial to Mesenchymal Transition in Human Breast Cancer. Breast Cancer Res. Treat. 2013;138(1):47-57. https://doi.org/10.1007/S10549-013-2415-3.; Villarejo A., Cortés-Cabrera Á., Molina-Ortíz P., et al. Differential Role of Snail1 and Snail2 Zinc Fingers in E-Cadherin Repression and Epithelial to Mesenchymal Transition. J. Biol. Chem. 2014;289(2):930-941. https://doi.org/10.1074/JBC.M113.528026.; Zhang Z., Yang C., Gao W., et al. FOXA2 Attenuates the Epithelial to Mesenchymal Transition by Regulating the Transcription of E-Cadherin and ZEB2 in Human Breast Cancer. Cancer Lett. 2015;361(2):240-250. https://doi.org/10.1016/J.CANLET.2015.03.008.; Alotaibi H., Basilicata M.F., Shehwana H., et al. Enhancer Cooperativity as a Novel Mechanism Underlying the Transcriptional Regulation of E-Cadherin during Mesenchymal to Epithelial Transition. Biochim. Biophys. Acta 2015;1849(6):731-742. https://doi.org/10.1016/J.BBAGRM.2015.01.005.; Wong S.H.M., Fang C.M., Chuah L.H., et al. E-Cadherin: Its Dysregulation in Carcinogenesis and Clinical Implications. Crit. Rev. Oncol. Hematol. 2018;121:11-22. https://doi.org/10.1016/J.CRITREVONC.2017.11.010.; Christiansen J.J., Rajasekaran A.K. Reassessing Epithelial to Mesenchymal Transition as a Prerequisite for Carcinoma Invasion and Metastasis. Cancer Res. 2006;66(17):8319-8326. https://doi.org/10.1158/0008-5472.CAN-06-0410.; Cavallaro U., Christofori G. Cell Adhesion and Signalling by Cadherins and Ig-CAMs in Cancer. Nat. Rev. Cancer 2004 42 2004;4(2):118-132. https://doi.org/10.1038/nrc1276.; Pan Y, Bi F, Liu N, et al. Expression of Seven Main Rho Family Members in Gastric Carcinoma. Biochem. Biophys. Res.Commun. 2004;315(3):686-691. https://doi.org/10.1016/J.BBRC.2004.01.108.; Zhan T., Rindtorff N., Boutros M. Wnt Signaling in Cancer. Oncogene 2017;36(11):1461-1473. https://doi.org/10.1038/ONC.2016.304.; Yong X., Tang B., Li B.S., et al. Helicobacter Pylori Virulence Factor CagA Promotes Tumorigenesis of Gastric Cancer via Multiple Signaling Pathways. Cell Commun. Signal. 2015;13(1):. https://doi.org/10.1186/S12964-015-0111-0.; Heasman S.J., Ridley A.J. Mammalian Rho GTPases: New Insights into Their Functions from in Vivo Studies. Nat. Rev. Mol. Cell Biol. 2008 99 2008;9(9):690-701. https://doi.org/10.1038/nrm2476.; Suriano G., Oliveira M.J., Huntsman D., et al. E-Cadherin Germline Missense Mutations and Cell Phenotype: Evidence for the Independence of Cell Invasion on the Motile Capabilities of the Cells. Hum. Mol. Genet. 2003;12(22):3007-3016. https://doi.org/10.1093/HMG/DDG316.; Bremm A., Walch A., Fuchs M., et al. Enhanced Activation of Epidermal Growth Factor Receptor Caused by Tumor-Derived E-Cadherin Mutations. Cancer Res. 2008;68(3):707-714. https://doi.org/10.1158/0008-5472.CAN-07-1588.; Mateus A.R., Seruca R., Machado J.C., et al. EGFR Regulates RhoA-GTP Dependent Cell Motility in E-Cadherin Mutant Cells. Hum. Mol. Genet. 2007;16(13):1639-1647. https://doi.org/10.1093/HMG/DDM113.; Soto E., Yanagisawa M., Marlow L.A., et al. P120 Catenin Induces Opposing Effects on Tumor Cell Growth Depending on E-Cadherin Expression. J. Cell Biol. 2008;183(4):737-749. https://doi.org/10.1083/JCB.200805113.; Cowell C.F., Yan I.K., Eiseler T., et al. Loss of Cell-Cell Contacts Induces NF-ΚB via RhoA-Mediated Activation of Protein Kinase D1. J. Cell. Biochem. 2009;106(4):714-728. https://doi.org/10.1002/JCB.22067.; Brücher B.L.D.M., Lang F., Jamall I.S. NF-ΚB Signaling and Crosstalk during Carcinogenesis. 4open 2019;2:13. https://doi.org/10.1051/FOPEN/2019010.; Sokolova O., Naumann M. NF-ΚB Signaling in Gastric Cancer. Toxins (Basel). 2017;9(4):. https://doi.org/10.3390/TOXINS9040119.; Kuphal S., Poser I., Jobin C., et al. Loss of E-Cadherin Leads to Upregulation of NFkappaB Activity in Malignant Melanoma. Oncogene 2004;23(52):8509-8519. https://doi.org/10.1038/SJ.ONC.1207831.; Park S.Y., Shin J.H., Kee S.H. E-Cadherin Expression Increases Cell Proliferation by Regulating Energy Metabolism through Nuclear Factor-ΚB in AGS Cells. Cancer Sci. 2017;108(9):1769-1777. https://doi.org/10.1111/CAS.13321.; Liu X., Chu K.M. E-Cadherin and Gastric Cancer: Cause, Consequence, and Applications. Biomed Res.Int. 2014;2014:. https://doi.org/10.1155/2014/637308.; Figueiredo J., Melo S., Carneiro P., et al. Clinical Spectrum and Pleiotropic Nature of CDH1 Germline Mutations. J. Med. Genet. 2019;56(4):199-208. https://doi.org/10.1136/JMEDGENET-2018-105807.; Sivakumaran S., Agakov F., Theodoratou E., et al. Abundant Pleiotropy in Human Complex Diseases and Traits. Am. J. Hum. Genet. 2011;89(5):607-618. https://doi.org/10.1016/J.AJHG.2011.10.004.; Simões-correia J., Silva D.I., Melo S., et al. DNAJB4 Molecular Chaperone Distinguishes WT from Mutant E-Cadherin, Determining Their Fate in Vitro and in Vivo. Hum. Mol. Genet. 2014;23(8):2094-2105. https://doi.org/10.1093/HMG/DDT602.; van der Post R.S., Vogelaar I.P., Carneiro F., et al. Hereditary Diffuse Gastric Cancer: Updated Clinical Guidelines with an Emphasis on Germline CDH1 Mutation Carriers. J. Med. Genet. 2015;52(6):361-374. https://doi.org/10.1136/JMEDGENET-2015-103094.; Usui G., Matsusaka K., Mano Y., et al. DNA Methylation and Genetic Aberrations in Gastric Cancer. Digestion 2021;102(1):25-32. https://doi.org/10.1159/000511243.; Zaraci K., Ozkinay F., Yilmaz O., et al. E-CADHERIN GENE PROMOTER METHYLATION IN PEDIATRIC ASTHMA PATHOGENESIS AND CLINICS. Eur. Respir. J. 2018;52(suppl 62):PA1300. https://doi.org/10.1183/13993003.CONGRESS-2018.PA1300.; Zong L., Seto Y. CpG Island Methylator Phenotype, Helicobacter Pylori, Epstein-Barr Virus, and Microsatellite Instability and Prognosis in Gastric Cancer: A Systematic Review and Meta-Analysis. PLoS One 2014;9(1): e86097 https://doi.org/10.1371/JOURNAL.PONE.0086097.; Park J., Jang K.L. Hepatitis C Virus Represses E-Cadherin Expression via DNA Methylation to Induce Epithelial to Mesenchymal Transition in Human Hepatocytes. Biochem. Biophys. Res.Commun. 2014;446(2):561-567. https://doi.org/10.1016/J.BBRC.2014.03.009.; Bass A.J., Thorsson V., Shmulevich I., et al.Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nat. 2014 5137517 2014;513(7517):202-209. https://doi.org/10.1038/nature13480.; Fukayama M., Ushiku T. Epstein-Barr Virus-Associated Gastric Carcinoma. Pathol. Res. Pract. 2011;207(9):. https://doi.org/10.1016/J.PRP.2011.07.004.; Yamashita M., Toyota M., Suzuki H., et al. DNA Methylation of Interferon Regulatory Factors in Gastric Cancer and Noncancerous Gastric Mucosae. Cancer Sci. 2010;101(7):1708-1716. https://doi.org/10.1111/J.1349-7006.2010.01581.X.; Nemtsova M.V., Strelnikov V.V., Tanas A.S., et al. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice. Curr. Genomics 2017;18(5):408. https://doi.org/10.2174/1389202918666170329110021.; Polk D.B., Peek R.M. Helicobacter Pylori: Gastric Cancer and Beyond. Nat. Rev. Cancer 2010;10(6):403-414. https://doi.org/10.1038/NRC2857.; Chen Y., Ren B., Yang J., et al. The Role of Histone Methylation in the Development of Digestive Cancers: A Potential Direction for Cancer Management. Signal Transduct. Target. Ther. 2020;5(1):. https://doi.org/10.1038/S41392-020-00252-1.; Hu Y., Zheng Y., Dai M., et al. Snail2 Induced E-Cadherin Suppression and Metastasis in Lung Carcinoma Facilitated by G9a and HDACs. Cell Adh. Migr. 2019;13(1):285-292. https://doi.org/10.1080/19336918.2019.1638689.; Fukagawa A., Ishii H., Miyazawa K., et al. ΔEF1 Associates with DNMT1 and Maintains DNA Methylation of the E-Cadherin Promoter in Breast Cancer Cells. Cancer Med. 2015;4(1):125-135. https://doi.org/10.1002/CAM4.347.; Li L., Geng Y., Feng R., et al. The Human RNA Surveillance Factor UPF1 Modulates Gastric Cancer Progression by Targeting Long Non-Coding RNA MALAT1. Cell. Physiol. Biochem. 2017;42(6):2194-2206. https://doi.org/10.1159/000479994.; Yan J., Zhang Y., She Q., et al. Long Noncoding RNA H19/MiR-675 Axis Promotes Gastric Cancer via FADD/Caspase 8/Caspase 3 Signaling Pathway. Cell. Physiol. Biochem. 2017;42(6):2364-2376. https://doi.org/10.1159/000480028.; Yan K., Tian J., Shi W., et al. LncRNA SNHG6 Is Associated with Poor Prognosis of Gastric Cancer and Promotes Cell Proliferation and EMT through Epigenetically Silencing P27 and Sponging MiR-101-3p. Cell. Physiol. Biochem. 2017;42(3):999-1012. https://doi.org/10.1159/000478682.; Wong T.S., Gao W., Chan J.Y.W.Interactions between E-Cadherin and Microrna Deregulation in Head and Neck Cancers: The Potential Interplay. Biomed Res.Int. 2014;2014:. https://doi.org/10.1155/2014/126038.; Bure I.V., Nemtsova M.V., Zaletaev D.V. Roles of E-Cadherin and Noncoding RNAs in the Epithelial-Mesenchymal Transition and Progression in Gastric Cancer.Int. J. Mol. Sci. 2019;20(12):. https://doi.org/10.3390/IJMS20122870.; Hammond S.M. An Overview of MicroRNAs. Adv. Drug Deliv. Rev. 2015;87:3-14. https://doi.org/10.1016/J.ADDR.2015.05.001.; miRBase https://www.mirbase.org/(accessed 2022-05-01).; Bure I.V., Haller F., Zaletaev D.V. Coding and Non-Coding: Molecular Portrait of GIST and Its Clinical Implication. Curr. Mol. Med. 2018;18:. https://doi.org/10.2174/1566524018666181004113436.; Ma D.N., Chai Z.T., Zhu X.D., et al. MicroRNA-26a Suppresses Epithelial-Mesenchymal Transition in Human Hepatocellular Carcinoma by Repressing Enhancer of Zeste Homolog 2. J. Hematol. Oncol. 2016;9(1):. https://doi.org/10.1186/S13045-015-0229-Y.; Carvalho J., Van Grieken N.C., Pereira P.M., et al. Lack of MicroRNA-101 Causes E-Cadherin Functional Deregulation through EZH2 up-Regulation in Intestinal Gastric Cancer. J. Pathol. 2012;228(1):31-44. https://doi.org/10.1002/PATH.4032.; Nowek K., Wiemer E.A.C., Jongen-Lavrencic M. The Versatile Nature of MiR-9/9 * in Human Cancer. Oncotarget 2018;9(29):20838-20854. https://doi.org/10.18632/ONCOTARGET.24889.; Costa A.M., Ferreira R.M., Pinto-Ribeiro I., et al. Helicobacter Pylori Activates Matrix Metalloproteinase 10 in Gastric Epithelial Cells via EGFR and ERK-Mediated Pathways. J. Infect. Dis. 2016;213(11):1767-1776. https://doi.org/10.1093/INFDIS/JIW031.; Yang Y., Li X., Du J., et al. Involvement of MicroRNAs-MMPs-E-Cadherin in the Migration and Invasion of Gastric Cancer Cells Infected with Helicobacter Pylori. Exp. Cell Res. 2018;367(2):196-204. https://doi.org/10.1016/J.YEXCR.2018.03.036.; Chen Z., Wu J., Huang W., et al. Long Non-Coding RNA RP11-789C1.1 Suppresses Epithelial to Mesenchymal Transition in Gastric Cancer Through the RP11-789C1.1/MiR-5003/E-Cadherin Axis. Cell. Physiol. Biochem. 2018;47(6):2432-2444. https://doi.org/10.1159/000491617.; Sakamoto N., Naito Y., Oue N., et al. MicroRNA-148a Is Downregulated in Gastric Cancer, Targets MMP7, and Indicates Tumor Invasiveness and Poor Prognosis. Cancer Sci. 2014;105(2):236-243. https://doi.org/10.1111/CAS.12330.; Li L.Q., Pan D., Chen Q., et al. Sensitization of Gastric Cancer Cells to 5-FU by MicroRNA-204 Through Targeting the TGFBR2-Mediated Epithelial to Mesenchymal Transition. Cell. Physiol. Biochem. 2018;47(4):1533-1545. https://doi.org/10.1159/000490871.; Zhang C., Liang Y., Ma M.H., et al. Downregulation of MicroRNA-376a in Gastric Cancer and Association with Poor Prognosis. Cell. Physiol. Biochem. 2018;51(5):2010-2018. https://doi.org/10.1159/000495820.; Cao Q., Liu F., Ji K., et al. MicroRNA-381 Inhibits the Metastasis of Gastric Cancer by Targeting TMEM16A Expression. J. Exp. Clin. Cancer Res. 2017;36(1):1-16. https://doi.org/10.1186/S13046-017-0499-Z/FIGURES/7.; Housman G., Byler S., Heerboth S., et al. Drug Resistance in Cancer: An Overview. Cancers (Basel). 2014;6(3):1769. https://doi.org/10.3390/CANCERS6031769.; Liu H.T., Xing A.Y., Chen X., et al. MicroRNA-27b, MicroRNA-101 and MicroRNA-128 Inhibit Angiogenesis by down-Regulating Vascular Endothelial Growth Factor C Expression in Gastric Cancers. Oncotarget 2015;6(35):37458. https://doi.org/10.18632/ONCOTARGET.6059.; Bure I.V., Kuznetsova E.B., Zaletaev D.V. Long Noncoding RNAs and Their Role in Oncogenesis. Mol. Biol. (Mosk). 2018;52(6):907-920. https://doi.org/10.1134/S0026898418060034.; Heery R., Finn S.P., Cuffe S., et al. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel). 2017;9(4):. https://doi.org/10.3390/CANCERS9040038.; Wang B., Yang H., Shen L., et al. Rs56288038 (C/G) in 3’UTR of IRF-1 Regulated by MiR-502-5p Promotes Gastric Cancer Development. Cell. Physiol. Biochem. 2016;40(1-2):391-399. https://doi.org/10.1159/000452554.; Gao S., Zhao Z.Y., Wu R., et al. Prognostic Value of Long Noncoding RNAs in Gastric Cancer: A Meta-Analysis. Onco. Targets. Ther. 2018;11:4877-4891. https://doi.org/10.2147/OTT.S169823.; Liu Y.W., Sun M., Xia R., et al. LincHOTAIR Epigenetically Silences MiR34a by Binding to PRC2 to Promote the Epithelial-to-Mesenchymal Transition in Human Gastric Cancer. Cell Death Dis. 2015;6(7):. https://doi.org/10.1038/CDDIS.2015.150.; Song W., Liu Y. Y., Peng J.J., et al. Identification of Differentially Expressed Signatures of Long Non-Coding RNAs Associated with Different Metastatic Potentials in Gastric Cancer. J. Gastroenterol. 2016;51(2):119-129. https://doi.org/10.1007/S00535-015-1091-Y.; Liu Y.Y., Chen Z.H., Peng J.J., et al. Up-Regulation of Long Non-Coding RNA XLOC_010235 Regulates Epithelial-to-Mesenchymal Transition to Promote Metastasis by Associating with Snail1 in Gastric Cancer. Sci. Rep. 2017;7(1):. https://doi.org/10.1038/S41598-017-02254-6.; Pan L., Liang W., Fu M., et al. Exosomes-Mediated Transfer of Long Noncoding RNA ZFAS1 Promotes Gastric Cancer Progression. J. Cancer Res. Clin. Oncol. 2017;143(6):991-1004. https://doi.org/10.1007/S00432-017-2361-2.; Dong D., Mu Z., Zhao C., et al. ZFAS1: A Novel Tumor-Related Long Non-Coding RNA. Cancer Cell Int. 2018;18(1):. https://doi.org/10.1186/S12935-018-0623-Y.; Chen D., Liu L., Wang K., et al. The Role of MALAT-1 in the Invasion and Metastasis of Gastric Cancer. Scand. J. Gastroenterol. 2017;52(6-7):790-796. https://doi.org/10.1080/00365521.2017.1280531.; Syllaios A., Moris D., Karachaliou G.S., et al. Pathways and Role of MALAT1 in Esophageal and Gastric Cancer (Review). Oncol. Lett. 2021;21(5):1-7. https://doi.org/10.3892/OL.2021.12604/HTML.; Lee N.K., Lee J.H., Ivan C., et al. MALAT1 Promoted Invasiveness of Gastric Adenocarcinoma. BMC Cancer 2017;17(1):. https://doi.org/10.1186/S12885-016-2988-4.; Cai H., Chen J., He B., et al. A FOXM1 Related Long Non-Coding RNA Contributes to Gastric Cancer Cell Migration. Mol. Cell. Biochem. 2015;406(1-2):31-41. https://doi.org/10.1007/S11010-015-2421-3.; Fu M., Huang Z., Zang X., et al. Long Noncoding RNA LINC00978 Promotes Cancer Growth and Acts as a Diagnostic Biomarker in Gastric Cancer. Cell Prolif. 2018;51(1):. https://doi.org/10.1111/CPR.12425.; Zuo Z.K., Gong Y., Chen X.H., et al. TGFβ1-Induced LncRNA UCA1 Upregulation Promotes Gastric Cancer Invasion and Migration. DNA Cell Biol. 2017;36(2):159-167. https://doi.org/10.1089/DNA.2016.3553.; Zhang E., He X., Yin D., et al. Increased Expression of Long Noncoding RNA TUG1 Predicts a Poor Prognosis of Gastric Cancer and Regulates Cell Proliferation by Epigenetically Silencing of P57. Cell Death Dis. 2016;7(2):. https://doi.org/10.1038/CDDIS.2015.356.; Sun J., Ding C., Yang Z., et al. The Long Non-Coding RNA TUG1 Indicates a Poor Prognosis for Colorectal Cancer and Promotes Metastasis by Affecting Epithelial-Mesenchymal Transition. J. Transl. Med. 2016;14(1):1-10. https://doi.org/10.1186/S12967-016-0786-Z/FIGURES/6.; Wang H., Chen W., Yang P., et al. Knockdown of Linc00152 Inhibits the Progression of Gastric Cancer by Regulating MicroRNA-193b-3p/ETS1 Axis. Cancer Biol. Ther. 2019;20(4):461-473. https://doi.org/10.1080/15384047.2018.1529124.; Chen D.L., Ju H.Q., Lu Y.X., et al. Long Non-Coding RNA XIST Regulates Gastric Cancer Progression by Acting as a Molecular Sponge of MiR-101 to Modulate EZH2 Expression. J. Exp. Clin. Cancer Res. 2016;35(1):. https://doi.org/10.1186/S13046-016-0420-1.; Saito T., Kurashige J., Nambara S., et al. A Long Non-Coding RNA Activated by Transforming Growth Factor-β Is an Independent Prognostic Marker of Gastric Cancer. Ann. Surg. Oncol. 2015;22 Suppl 3:915-922. https://doi.org/10.1245/S10434-015-4554-8.; Li Y., Li D., Zhao M., et al. Long Noncoding RNA SNHG6 Regulates P21 Expression via Activation of the JNK Pathway and Regulation of EZH2 in Gastric Cancer Cells. Life Sci. 2018;208:295-304. https://doi.org/10.1016/J.LFS.2018.07.032.; Zhou X., Chen H., Zhu L., et al. Helicobacter Pylori Infection Related Long Noncoding RNA (LncRNA) AF147447 Inhibits Gastric Cancer Proliferation and Invasion by Targeting MUC2 and up-Regulating MiR-34c. Oncotarget 2016;7(50):82770-82782. https://doi.org/10.18632/ONCOTARGET.13165.; Zhao L., Guo H., Zhou B., et al. Long Non-Coding RNA SNHG5 Suppresses Gastric Cancer Progression by Trapping MTA2 in the Cytosol. Oncogene 2016;35(44):5770-5780. https://doi.org/10.1038/ONC.2016.110.; Yu Y., Li L., Zheng Z., et al. Long Non-Coding RNA Linc00261 Suppresses Gastric Cancer Progression via Promoting Slug Degradation. J. Cell. Mol. Med. 2017;21(5):955-967. https://doi.org/10.1111/JCMM.13035.; Qian Y., Shi L., Luo Z. Long Non-Coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front. Med. 2020;7:. https://doi.org/10.3389/FMED.2020.612393.; Khaitan D., Dinger M.E., Mazar J., et al. The Melanoma-Upregulated Long Noncoding RNA SPRY4-IT1 Modulates Apoptosis and Invasion. Cancer Res. 2011;71(11):3852-3862. https://doi.org/10.1158/0008-5472.CAN-10-4460.; Cao D., Ding Q., Yu W., et al. Long Noncoding RNA SPRY4-IT1 Promotes Malignant Development of Colorectal Cancer by Targeting Epithelial-Mesenchymal Transition. Onco. Targets. Ther. 2016;9:5417. https://doi.org/10.2147/OTT.S111794.; Wang M., Dong X., Feng Y., et al. Prognostic Role of the Long Non-Coding RNA, SPRY4 Intronic Transcript 1, in Patients with Cancer: A Meta-Analysis. Oncotarget 2017;8(20):33713-33724. https://doi.org/10.18632/ONCOTARGET.16735.; Qie P., Yin Q., Xun X., et al. Long Non-Coding RNA SPRY4-IT1 as a Promising Indicator for Three Field Lymph-Node Dissection of Thoracic Esophageal Carcinoma. J. Cardiothorac. Surg. 2021;16(1):. https://doi.org/10.1186/S13019-021-01433-X.; Qiao C.F., Zhang Y., Jin L., et al. High Expression of LncRNA AFAP1-AS1 Promotes Cell Proliferation and Invasion by Inducing Epithelial-to-Mesenchymal Transition in Gastric Cancer.Int J Clin Exp Pathol 2017;10(1):393-400.; Guo J.Q., Li S.J., Guo G.X. Long Noncoding RNA AFAP1-AS1 Promotes Cell Proliferation and Apoptosis of Gastric Cancer Cells via PTEN/p-AKT Pathway. Dig. Dis. Sci. 2017;62(8):2004-2010. https://doi.org/10.1007/S10620-017-4584-0.; Wu Q., Xiang S., Ma J., et al. Long Non-Coding RNA CASC15 Regulates Gastric Cancer Cell Proliferation, Migration and Epithelial Mesenchymal Transition by Targeting CDKN1A and ZEB1. Mol. Oncol. 2018;12(6):799-813. https://doi.org/10.1002/1878-0261.12187.; Zhang L.L., Zhang L.F., Guo X.H., et al. Downregulation of MiR-335-5p by Long Noncoding RNA ZEB1-AS1 in Gastric Cancer Promotes Tumor Proliferation and Invasion. DNA Cell Biol. 2018;37(1):46-52. https://doi.org/10.1089/DNA.2017.3926.; Fu J.W., Kong Y., Sun X. Long Noncoding RNA NEAT1 Is an Unfavorable Prognostic Factor and Regulates Migration and Invasion in Gastric Cancer. J. Cancer Res. Clin. Oncol. 2016;142(7):1571-1579. https://doi.org/10.1007/S00432-016-2152-1.; Tan H.Y., Wang C., Liu G., et al. Long Noncoding RNA NEAT1-Modulated MiR-506 Regulates Gastric Cancer Development through Targeting STAT3. J. Cell. Biochem. 2019;120(4):4827-4836. https://doi.org/10.1002/JCB.26691.; Zeng S., Xie X., Xiao Y.F., et al. Long Noncoding RNA LINC00675 Enhances Phosphorylation of Vimentin on Ser83 to Suppress Gastric Cancer Progression. Cancer Lett. 2017;412:179-187. https://doi.org/10.1016/J.CANLET.2017.10.026.; Han Y., Ye J., Wu D., et al. LEIGC Long Non-Coding RNA Acts as a Tumor Suppressor in Gastric Carcinoma by Inhibiting the Epithelial-to-Mesenchymal Transition. BMC Cancer 2014;14(1):. https://doi.org/10.1186/1471-2407-14-932.; Vedove A.D., Falchi F., Donini S., et al. Structure-Based Virtual Screening Allows the Identification of Efficient Modulators of E-Cadherin-Mediated Cell-Cell Adhesion.Int. J. Mol. Sci. 2019;20(14):E3404-E3404. https://doi.org/10.3390/IJMS20143404.; Pal M., Bhattacharya S., Kalyan G., et al. Cadherin Profiling for Therapeutic Interventions in Epithelial Mesenchymal Transition (EMT) and Tumorigenesis. Exp. Cell Res. 2018;368(2):137-146. https://doi.org/10.1016/J.YEXCR.2018.04.014.; Shen K.H., Liao A.C.H., Hung J.H., et al. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression. Molecules 2014;19(8):11896-11914. https://doi.org/10.3390/MOLECULES190811896.; Xie F., Liu J., Li C., et al. Simvastatin Blocks TGF-Β1-Induced Epithelial-Mesenchymal Transition in Human Prostate Cancer Cells. Oncol. Lett. 2016;11(5):3377. https://doi.org/10.3892/OL.2016.4404.; Zhang J., Shen C., Wang L., et al. Metformin Inhibits Epithelial-Mesenchymal Transition in Prostate Cancer Cells: Involvement of the Tumor Suppressor MiR30a and Its Target Gene SOX4. Biochem. Biophys. Res.Commun. 2014;452(3):746-752. https://doi.org/10.1016/J.BBRC.2014.08.154.; Blaschuk O.W. N-Cadherin Antagonists as Oncology Therapeutics. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015;370(1661):. https://doi.org/10.1098/RSTB.2014.0039.; Liu J., Sun X., Qin S., et al. CDH1 Promoter Methylation Correlates with Decreased Gene Expression and Poor Prognosis in Patients with Breast Cancer. Oncol. Lett. 2016;11(4):2635-2643. https://doi.org/10.3892/OL.2016.4274.; Kurata T., Fushida S., Kinoshita J., et al. Low-Dose Eribulin Mesylate Exerts Antitumor Effects in Gastric Cancer by Inhibiting Fibrosis via the Suppression of Epithelial-Mesenchymal Transition and Acts Synergistically with 5-Fluorouracil. Cancer Manag. Res. 2018;10:2729-2742. https://doi.org/10.2147/CMAR.S167846.; Zhu J., Wen K. Astragaloside IV Inhibits TGF-Β1-Induced Epithelial-Mesenchymal Transition through Inhibition of the PI3K/Akt/NF-ΚB Pathway in Gastric Cancer Cells. Phytother. Res. 2018;32(7):1289-1296. https://doi.org/10.1002/PTR.6057.; Li N., Zhang S., Luo Q., et al. The Effect of Dihydroartemisinin on the Malignancy and Epithelial-Mesenchymal Transition of Gastric Cancer Cells. Curr. Pharm. Biotechnol. 2019;20(9):719-726. https://doi.org/10.2174/1389201020666190611124644.; Liu W.H., Yuan J.B., Zhang F., et al. Curcumin Inhibits Proliferation,Migration and Invasion of Gastric Cancer Cells via Wnt3a/β-Catenin/EMT Signaling Pathway. Zhongguo Zhong Yao Za Zhi 2019;44(14):3107-3115. https://doi.org/10.19540/J.CNKI.CJCMM.20190304.002.; Zhao M., Ang L., Huang J., et al. MicroRNAs Regulate the Epithelial-Mesenchymal Transition and Influence Breast Cancer Invasion and Metastasis. Tumour Biol. 2017;39(2):1-8. https://doi.org/10.1177/1010428317691682.; Zhang J., Li X., Huang L. Non-Viral Nanocarriers for SiRNA Delivery in Breast Cancer. J. Control. Release 2014;190:440-450. https://doi.org/10.1016/J.JCONREL.2014.05.037.; Kjällquist U., Erlandsson R., Tobin N.P., et al. Exome Sequencing of Primary Breast Cancers with Paired Metastatic Lesions Reveals Metastasis-Enriched Mutations in the A-Kinase Anchoring Protein Family (AKAPs). BMC Cancer 2018;18(1):1-17. https://doi.org/10.1186/S12885-018-4021-6/FIGURES/3.
-
13
-
14Academic Journal
Συγγραφείς: V. M. Perelmuter, Evgeny V. Denisov
Πηγή: Hepatology. 2018. Vol. 86, № 3. P. 807-810
Θεματικοί όροι: Adult, 0301 basic medicine, эпителиально-мезенхимальный переход, 03 medical and health sciences, Epithelial-Mesenchymal Transition, Phenotype, Carcinogenesis, рак, Liver Neoplasms, Neoplastic Stem Cells, Humans, канцерогенез
Συνδεδεμένο Πλήρες ΚείμενοΣύνδεσμος πρόσβασης: https://pubmed.ncbi.nlm.nih.gov/29331068
https://pubmed.ncbi.nlm.nih.gov/29331068/
https://aasldpubs.onlinelibrary.wiley.com/doi/10.1002/hep.29784
https://www.ncbi.nlm.nih.gov/pubmed/29331068
https://europepmc.org/abstract/MED/29331068
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000634908 -
15Academic Journal
Πηγή: Исследования и практика в медицине, Vol 8, Iss 2 (2021)
Θεματικοί όροι: колоректальный рак, эпителиально-мезенхимальный переход, иммуногистохимическое исследование, биомаркеры, уровень экспрессии, e-cadherin, zeb1., Medicine
Περιγραφή αρχείου: electronic resource
Relation: https://www.rpmj.ru/rpmj/article/view/665; https://doaj.org/toc/2409-2231; https://doaj.org/toc/2410-1893
Σύνδεσμος πρόσβασης: https://doaj.org/article/49bcffdec08f4e6f8544c40fdd529bfd
-
16Academic Journal
Συγγραφείς: Dvoryashina, I. A., Velikorodnaya, Yu. I., Terent'ev, A. V., Дворяшина, И. А., Великородная, Ю. И., Терентьев, А. В.
Πηγή: Сборник статей
Θεματικοί όροι: HEPATOGENESIS, EPITHELIAL -MESENCHYMAL TRANSITION, VIMENTIN, CYTOKERATIN 18, HEPATOBLAST, ГЕПАТОГЕНЕЗ, ЭПИТЕЛИАЛЬНО-МЕЗЕНХИМАЛЬНЫЙ ПЕРЕХОД, ВИМЕНТИН, ЦИТОКЕРАТИН 18, ГЕПАТОБЛАСТ
Περιγραφή αρχείου: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/6822
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/6822
-
17Academic Journal
Συγγραφείς: M. A. Akimenko, O. V. Voronova, T. S. Kolmakova, М. А. Акименко, О. В. Воронова, Т. С. Колмакова
Πηγή: Urology Herald; Том 9, № 3 (2021); 5-11 ; Вестник урологии; Том 9, № 3 (2021); 5-11 ; 2308-6424 ; 10.21886/2308-6424-2021-9-3
Θεματικοί όροι: иммунофенотипирование, unilateral ureteral obstruction, epithelial-mesenchymal transition, immunophenotyping, односторонняя непроходимость мочеточника, эпителиально-мезенхимальный переход
Περιγραφή αρχείου: application/pdf
Relation: https://www.urovest.ru/jour/article/view/466/333; Funahashi Y, Hattori R, Yamamoto T, Kamihira O, Moriya Y, Gotoh M. Change in contralateral renal parenchymal volume 1 week after unilateral nephrectomy. Urology. 2009;74(3):708-12. DOI:10.1016/j.urology.2008.11.008; Funahashi Y, Hattori R, Yamamoto T, Aoki S, Majima T, Gotoh M. Renal parenchymal volume increases after contralateral nephrectomy: Assessment using three-dimensional ultrasonography. International Journal of Urology. 2011;18(12):857-60. DOI:10.1111/j.1442-2042.2011.02864.x; Yang M, Gao F, Liu H, Pang H, Zuo YP, Yong T. Prospectively estimating the recoverability of renal function after relief of unilateral urinary obstruction by measurement of renal parenchymal volume. Acad Radiol. 2013;20(4):401-6. DOI:10.1016/j.acra.2012.10.007; Евсеев С.В., Гусев А.А. Значение оценки почечной функции при почечно-клеточном раке. Вестник урологии. 2013;(3):39-53. DOI:10.21886/2308-6424-2013-0-3-39-53; Li WQ, Dong ZQ, Zhou XB, Long B, Zhang LS, Yang J, Zhou XG, Zheng RP, Zhang J. Renovascular morphological changes in a rabbit model of hydronephrosis. J Huazhong Univ Sci Technolog Med Sci. 2014;34(4):575-81. DOI:10.1007/s11596-014-1318-9; Li XD, Wu YP, Wei Y, Chen SH, Zheng QS, Cai H, Xue XY, Xu N. Predictors of Recoverability of Renal Function after Pyeloplasty in Adults with Ureteropelvic Junction Obstruction. Urol Int. 2018;100(2):209-215. DOI:10.1159/000486425; Синякова Л.А., Берников Е.В., Лоран О.Б. Функциональное состояние почек у больных, перенёсших гнойный пиелонефрит. Вестник урологии. 2018;6(4):49-59. DOI:10.21886/2308-6424-2018-6-4-49-59; Kramann R, Kusaba T, Humphreys BD. Who regenerates the kidney tubule? Nephrol. Dial. Transplant. 2015; 30(6):903-910. DOI:10.1093/ndt/gfu281; Chevalier RL. Counterbalance in functional adaptation to ureteral obstruction during development. Pediatr Nephrol. 1990;4(4):442-4. DOI:10.1007/BF00862533; Springer A, Kratochwill K, Bergmeister H, Csaicsich D, Huber J, Mayer B, Mühlberger I, Stahlschmidt J, Subramaniam R, Aufricht C. A fetal sheep model for studying compensatory mechanisms in the healthy contralateral kidney after unilateral ureteral obstruction. J Pediatr Urol. 2015;11(6):352.e1-7. DOI:10.1016/j.jpurol.2015.04.041; Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009;75(11):1145-52. DOI:10.1038/ki.2009.86; Choi SY, Yoo S, You D, Jeong IG, Song C, Hong B, Hong JH, Ahn H, Kim CS. Adaptive functional change of the contralateral kidney after partial nephrectomy. Am J Physiol Renal Physiol. 2017;313(2):192-8. DOI:10.1152/ajprenal.00058.2017; Bianco M, Lopes JA, Beiral HV, Filho JD, Frankenfeld SP, Fortunato RS, Gattass CR, Vieyra A, Takiya CM. The contralateral kidney presents with impaired mitochondrial functions and disrupted redox homeostasis after 14 days of unilateral ureteral obstruction in mice. PLoS One. 2019;14(6). DOI:10.1371/journal.pone.0218986; Cruz-Solbes A, Youker K. Epithelial to Mesenchymal Transition (EMT) and Endothelial to Mesenchymal Transition (EndMT): Role and Implications in Kidney Fibrosis. Results Probl Cell Differ. 2017;60:345-72. DOI:10.1007/978-3-319-51436-9_13; He J, Xu Y, Koya D, Kanasaki K. Role of the endothelial-tomesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol. 2013;17(4):488-97. DOI:10.1007/s10157-013-0781-0; Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot P-A, Kaplanski G, Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina L. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol. 2019;15(2):87-108. DOI:10.1038/s41581-018-0098-z; Ucero AC, Benito-Martin A, Izquierdo MC, Sanchez-Niño MD, Sanz AB, Ramos AM, Berzal S, Ruiz-Ortega M, Egido J, Ortiz A. Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol. 2014;46: 765-76. DOI:10.1007/s11255-013-0520-1; Martínez-Klimova E, Aparicio-Trejo O, Gómez-Sierra T, Jiménez-Uribe A, Bellido B, Pedraza-Chaverri J. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction. Biofactors. 2020;46(5):716-33. DOI:10.1002/biof.1673; Giamarellos-Bourboulis EJ, Adamis T, Laoutaris G, Sabracos L, Koussoulas V, Mouktaroudi M, Perrea D, Karayannacos PE, Giamarellou H. Immunomodulatory clarithromycin treatment of experimental sepsis and acute pyelonephritis caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2004;48(1):93-9. DOI:10.1128/aac.48.1.93-99.2004; Акименко М.А., Тодоров С.С., Колмакова Т.С. Динамика морфологических адаптационно-компенсаторных изменений в ткани контралатеральной почки при обструкции мочеточников в эксперименте. Нефрология. 2017;21(5):80-4. DOI:10.24884/1561-6274-2017-21-5-119-124; Terada N, Karim MR, Izawa T, Kuwamura M, Yamate J. Immunolocalization of β-catenin, E-cadherin and N-cadherin in neonate and adult rat kidney. J Vet Med Sci. 2017;79(11):1785-90. DOI:10.1292/jvms.17-0439; Prozialeck WC, Lamar PC, Appelt DM. Differential expression of E-cadherin, N-cadherin and beta-catenin in proximal and distal segments of the rat nephron. BMC Physiol. 2004;4:10. DOI:10.1186/1472-6793-4-10; Djudjaj, Papasotiriou M, Bülow RD, Wagnerova A, Lindenmeyer MT, Cohen CD, Strnad P, Goumenos DS, Floege J, Boor P. Keratins are novel markers of renal epithelial cell injury. Kidney Int. 2016;89(4):792-808. DOI:10.1016/j.kint.2015.10.015; Snider NT. Kidney keratins: cytoskeletal stress responders with biomarker potential. Kidney Int. 2016;89(4):738-40. DOI:10.1016/j.kint.2015.12.040; Seccia T, Caroccia B, Piazza M, Rossi GP. The Key Role of Epithelial to Mesenchymal Transition (EMT) in Hypertensive Kidney Disease. Int J Mol Sci. 2019;20(14):2-9. DOI:10.3390/ijms20143567; Акименко М.А., Тодоров С.С., Колмакова Т.С. Динамика морфологических адаптационно-компенсаторных изменений в ткани почки при обструкции мочеточников в эксперименте. Нефрология. 2017;5:71-5. DOI:10.24884/1561-6274-2017-21-5-71-75; https://www.urovest.ru/jour/article/view/466
-
18Academic Journal
Συγγραφείς: I. A. Novikova, O. I. Kit, И. А. Новикова, О. И. Кит
Πηγή: Research and Practical Medicine Journal; Том 8, № 2 (2021); 23-33 ; Research'n Practical Medicine Journal; Том 8, № 2 (2021); 23-33 ; 2410-1893 ; 10.17709/2410-1893-2021-8-2
Θεματικοί όροι: ZEB1, epithelial-mesenchymal transition, immunohistochemical study, biomarkers, expression level, E-cadherin, эпителиально-мезенхимальный переход, иммуногистохимическое исследование, биомаркеры, уровень экспрессии, E-кадгерин
Περιγραφή αρχείου: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/719/413; Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). Под ред. А.Д.Каприн, В.В.Старинский, Г.В.Петрова. МНИОИ им. П.А. Герцена. М.: 2017, 250 с.; Непомнящая Е.М., Кит О.И., Нистратова О.В., Новикова И.А., Никипелова Е.А., Бахтин А.В. и др. Циркулирующие опухолевые клетки и некоторые морфо-иммуногистохимические показатели при колоректальном раке. Современные проблемы науки и образования. 2016;(2):140.; Патютко Ю.И., Котельников А.Г., Мамонтов К.Г., Пономаренко А.А., Лазарев А.Ф. Непосредственные результаты резекций печени по поводу метастазов колоректального рака. Онкологическая колопроктология. 2014;(1):14–20.; Крахмаль Н.В., Завьялова М.В., Денисов Е.В., Вторушин С.В., Перельмутер В.М. Инвазия опухолевых эпителиальных клеток: механизмы и проявления. Acta Naturae. 2015;7(2(25)):18–31.; Поспехова Н.И., Шубин В.П., Цуканов А.С., Кашников В.Н., Фролов С.А., Ачкасов С.И. и др. Эпителиально-мезенхимальный переход при колоректальном раке разных стадий. Молекулярная медицина. 2015;(1):34–38.; Сагакянц А.Б. Объединенный иммунологический форум: современные направления развития фундаментальной и прикладной онкоиммунологии (Новосибирск, 2019). Южно-Российский онкологический журнал. 2020;1(2):36–45. https://doi.org/10.37748/2687-0533-2020-1-2-5; Nieto MA, Huang RY-J, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016 Jun 30;166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028; Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 2006 Sep;131(3):830–840. https://doi.org/10.1053/j.gastro.2006.06.016; Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009 Jun;28(1–2):151–166. https://doi.org/10.1007/s10555-008-9179-y; Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005 Mar 31;24(14):2375–2385. https://doi.org/10.1038/sj.onc.1208429; Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008 Jan 15;68(2):537–544. http://dx.doi.org/10.1158/0008-5472.CAN-07-5682; Liu Y, Zhang N, Wang Y, Xu M, Liu N, Pang X, et al. Zinc finger E-box binding homeobox 1 promotes invasion and bone metastasis of small cell lung cancer in vitro and in vivo. Cancer Sci. 2012 Aug;103(8):1420–1428. https://doi.org/10.1111/j.1349-7006.2012.02347.x; Кит О.И., Шатова Ю.С., Новикова И.А., Владимирова Л.Ю., Ульянова Е.П., Комова Е.А. и др. Экспрессия P53 и Bcl2 при различных подтипах рака молочной железы. Фундаментальные исследования. 2014;(10-1):85–88.; Moussa RA, Khalil EZI, Ali AI. Prognostic Role of Epithelial-Mesenchymal Transition Markers “E-Cadherin, β-Catenin, ZEB1, ZEB2 and p63” in Bladder Carcinoma. World J Oncol. 2019 Dec;10(6):199–217. https://doi.org/10.14740/wjon1234; Sistigu A, Di Modugno F, Manic G, Nisticò P. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine Growth Factor Rev. 2017 Aug;36:67–77. https://doi.org/10.1016/j.cytogfr.2017.05.008; Ситковская А.О., Новикова И.А., Златник Е.Ю., Ульянова Е.П., Шульгина О.Г., Колесников В.Е. и др. Корреляционный анализ показателей локального иммунитета и эпителиально-мезенхимального перехода больных колоректальным раком в зависимости от уровня циркулирующих опухолевых клеток. Современные проблемы науки и образования. 2020;(5):90. https://doi.org/10.17513/spno.30107; Xu F, Li S, Zhang J, Wang L, Wu X, Wang J, et al. Cancer Stemness, Immune Cells, and Epithelial-Mesenchymal Transition Cooperatively Predict Prognosis in Colorectal Carcinoma. Clin Colorectal Cancer. 2018 Sep;17(3):e579–e592. https://doi.org/10.1016/j.clcc.2018.05.007; Vlashi E, Pajonk F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol. 2015 Apr;31:28–35. https://doi.org/10.1016/j.semcancer.2014.07.001; Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013 Jul 3;154(1):61–74. https://doi.org/10.1016/j.cell.2013.06.005; Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, et al. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel). 2020 Jun 19;12(6):1632. https://doi.org/10.3390/cancers12061632; Siebzehnrubl FA, Silver DJ, Tugertimur B, Deleyrolle LP, Siebzehnrubl D, Sarkisian MR, et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med. 2013 Aug;5(8):1196–1212. https://doi.org/10.1002/emmm.201302827; Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, et al. Epithelial to mesenchymal transitioncontributes to drug resistance in pancreatic cancer. Cancer Res. 2009 Jul 15;69(14):5820–5828. https://doi.org/10.1158/0008-5472.CAN-08-2819; Miyahara S, Hamasaki M, Hamatake D, Yamashita S-I, Shiraishi T, Iwasaki A, et al. Clinicopathological analysis of pleomorphic carcinoma of the lung: diffuse ZEB1 expression predicts poor survival. Lung Cancer. 2015 Jan;87(1):39–44. https://doi.org/10.1016/j.lungcan.2014.11.007; Paek AR, Lee C-H, You HJ. A role of zinc-finger protein 143 for cancer cell migration and invasion through ZEB1 and E-cadherin in colon cancer cells. Mol Carcinog. 2014 Feb;53 Suppl 1:E161– E168. https://doi.org/10.1002/mc.22083; Yao X, Sun S, Zhou X, Zhang Q, Guo W, Zhang L. Clinicopathological significance of ZEB-1 and E-cadherin proteins in patients with oral cavity squamous cell carcinoma. Onco Targets Ther. 2017;10:781–790. https://doi.org/10.2147/OTT.S111920; Zhou J, Tao D, Xu Q, Gao Z, Tang D. Expression of E-cadherin and vimentin in oral squamous cell carcinoma. Int J Clin Exp Pathol. 2015;8(3):3150–3154.; Masuda R, Kijima H, Imamura N, Aruga N, Nakazato K, Oiwa K, et al. Laminin-5γ2 chain expression is associated with tumor cell invasiveness and prognosis of lung squamous cell carcinoma. Biomed Res. 2012;33(5):309–317. https://doi.org/10.2220/biomedres.33.309; van der Horst G, Bos L, van der Pluijm G. Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma. Mol Cancer Res. 2012 Aug;10(8):995–1009. https://doi.org/10.1158/1541-7786.MCR-12-0274; Jang MH, Kim HJ, Kim EJ, Chung YR, Park SY. Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome. Hum Pathol. 2015 Sep;46(9):1267–1274. https://doi.org/10.1016/j.humpath.2015.05.010; https://www.rpmj.ru/rpmj/article/view/719
-
19Academic Journal
Συγγραφείς: D. A. Ivolgin, D. A. Kudlay, Д. А. Иволгин, Д. А. Кудлай
Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 8, № 1 (2021); 64-84 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 8, № 1 (2021); 64-84 ; 2413-5496 ; 2311-1267
Θεματικοί όροι: эпителиально-мезенхимальный переход, proliferative signal, epithelial-mesenchymal transition, пролиферативный сигнал
Περιγραφή αρχείου: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/692/635; Wang Y., Chen X., Cao W., Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 2014;15(11):1009–16. doi:10.1038/ni.3002.; da Silva Meirelles L., Fontes A.M., Covas D.T., Caplan A.I Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009;20(5–6):419–27. doi:10.1016/j.cytogfr.2009.10.002.; https://clinicaltrials.gov/ct2/results?term=mesenchymal+stem+cell&Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&recrs=e&age_v=&gndr=&type=&rslt=&phase=2&phase=3 (Date of access – 02.03.2021).; Phinney D.G., Galipeau J., Krampera M., Martin I., Shi Y., Sensebe L. MSCs: science and trials. Nat Med 2013;19(7):812. doi:10.1038/nm.3220.; Elzaouk L., Moelling K., Pavlovic J. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 2006;15(11):865–74. doi:10.1111/j.1600-0625.2006.00479.x.; Khakoo A.Y., Pati S., Anderson S.A., Reid W., Elshal M.F., Rovira I.I., Nguyen A.T., Malide D., Combs C.A., Hall G., Zhang J., Raffeld M., Rogers T.B., Stetler-Stevenson W., Frank J.A., Reitz M., Finkel T. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 2006;203(5):1235–47. doi:10.1084/jem.20051921.; Karnoub A.E., Dash A.B., Vo A.P., Sullivan A., Brooks M.W., Bell G.W., Richardson A.L., Polyak K., Tubo R., Weinberg R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449(7162):557–63. doi:10.1038/nature06188.; Ridge S.M., Sullivan F.J., Glynn S.A. Mesenchymal stem cells: key players in cancer progression. Mol Cancer 2017;16(1):31. doi:10.1186/s12943-017-0597-8.; Ghaderi A., Abtahi S. Mesenchymal Stem Cells: Miraculous Healers or Dormant Killers? Stem Cell Rev Rep 2018;14(5):722–33. doi:10.1007/s12015-018-9824-y 3.; Lazennec G., Jorgensen C. Concise review: adult multipotent stromal cells and cancer: risk or benefi t? Stem Cells 2008;26(6):1387–94. doi:10.1634/stemcells.2007-1006.; Lazennec G., Lam P.Y. Recent discoveries concerning the tumor – mesenchymal stem cell interactions. Biochim Biophys Acta 2016;1886(2):290–9. doi:10.1016/j.bbcan.2016.10.004.; Chavey C., Bibeau F., Gourgou-Bourgade S., Burlinchon S, Boissiere F., Laune D., Roques S., Lazennec G. Estrogen-receptor negative breast cancers exhibit a high cytokine content. Breast Cancer Res 2007;9(1):R15. doi:10.1186/bcr1648.; Lazennec G., Richmond A. Chemokines and chemokine receptors: new insights into cancer-related infl ammation. Trends Mol Med 2010;16(3):133–44. doi:10.1016/j.molmed.2010.01.003.; Klopp A.H., Spaeth E.L., Dembinski J.L.,Woodward W.A., Munshi A., Meyn R.E., Cox J.D., Andreeff M., Marini F.C. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 2007;67(24):11687–95. doi:10.1158/0008-5472.CAN-07-1406.; Menon L.G., Picinich S., Koneru R., Gao H. , Lin S.Y., Koneru M., Mayer-Kuckuk P., Glod J., Banerjee D. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 2007;25(2):520–8. doi:10.1634/stemcells.2006-0257.; Kim D.S., Kim J.H., Lee J.K., Choi S.J., Kim J.S., Jeun S.S., Oh W., Yang Y.S., Chang J.W. Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev 2009;18(3):511–9. doi:10.1089/scd.2008.0050.; Dwyer R.M., Potter-Beirne S.M., Harrington K.A., Lowery A.J., Hennessy E., Murphy J.M., Barry F.P., O’Brien T., Kerin M.J. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007;13(17):5020–7. doi:10.1158/1078-0432.CCR-07-0731.; Xu S., Menu E., De Becker A., Van Camp B., Vanderkerken K., Van Riet I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 2012;30(2):266–79. doi:10.1002/stem.787.; Lejmi E., Perriraz N., Clement S., Morel P., Baertschiger R., Christofilopoulos P., Meier R., Bosco D., Buhler D.H., Gonelle-Gispert G. Inflammatory Chemokines MIP-1delta and MIP-3alpha Are Involved in the Migration of Multipotent Mesenchymal Stromal Cells Induced by Hepatoma Cells. Stem Cells Dev 2015;24(10):1223–35. doi:10.1089/scd.2014.0176.; Lourenco S., Teixeira V.H., Kalber T., Jose R.J., Floto R.A., Janes S.M. Macrophage migration inhibitory factorCXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J Immunol 2015;194(7):3463–74. doi:10.4049/jimmunol.1402097.; Haga H., Yan I.K., Takahashi K., Wood J., Zubair A., Patel T. Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth. J Extracell Vesicles 2015;4:24900. doi:10.3402/jev.v4.24900.; Coffelt S.B., Marini F.C., Watson K., Zwezdaryk K.J., Dembinski J.L., LaMarca H.L., Tomchuck S.L., zu Bentrup K.H., Danka E.S., Henkle S.L., Scandurro A.B. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 2009; 106(10):3806–11. doi:10.1073/pnas.0900244106.; Lin S.Y., Yang J., Everett A.D., Clevenger C.V., Koneru M., Mishra P.J., Kamen B., Banerjee D., Glod J. The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells. Exp Cell Res 2008;314(17):3107–17. doi:10.1016/j.yexcr.2008.07.028.; Birnbaum T., Roider J., Schankin C.J., Padovan C.S., Schichor C., Goldbrunner R., Straube A. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 2007;83(3):241–7. doi:10.1007/s11060-007-9332-4.; Gutova M., Najbauer J., Frank R.T., Kendall S.E., Gevorgyan A., Metz M.Z., Guevorkian M., Edmiston M., Zhao D, Glackin C.A., Kim S.U., Aboody K.S. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells 2008;26(6):1406–13. doi:10.1634/stemcells.2008-0141.; Heissig B., Dhahri D., Eiamboonsert S., Salama Y., Shimazu H., Munakata S., Hattori K. Role of mesenchymal stem cell-derived fi brinolytic factor in tissue regeneration and cancer progression. Cell Mol Life Sci 2015;72(24):4759–70. doi:10.1007/s00018-015-2035-7.; Ho I.A., Yulyana Y., Sia K.C., Newman J.P., Guo C.M., Hui K.M., Lam P.Y. Matrix metalloproteinase-1-mediated mesenchymal stem cell tumor tropism is dependent on crosstalk with stromal derived growth factor 1/C-X-C chemokine receptor 4 axis. FASEB J 2014;28(10):4359–68. doi:10.1096/fj.14-252551.; Ho I.A., Chan K.Y., Ng W.H., Guo C.M., Hui K.M., Cheang P., Lam P.Y. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 2009;27(6):1366–75. doi:10.1002/stem.50.; Zheng Y., He L., Wan Y., Song J. H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev 2013;22(2):256–67. doi:10.1089/scd.2012.0172.; He L., Zhao F., Zheng Y., Wan Y., Song J. Loss of interactions between p53 and survivin gene in mesenchymal stem cells after spontaneous transformation in vitro. Int J Biochem Cell Biol 2016;75:74–84. doi:10.1016/j.biocel.2016.03.018.; Luo J., Lee S.O., Cui Y., Yang R., Li L., Chang C. Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion via altering the CCL5/HIF2alpha/androgen receptor signals. Oncotarget 2015;6(29):27555–65. doi:10.18632/oncotarget.4515.; Makinoshima H., Dezawa M. Pancreatic cancer cells activate CCL5 expression in mesenchymal stromal cells through the insulin-like growth factor-I pathway. FEBS Lett 2009;583(22):3697–703. doi:10.1016/j.febslet.2009.10.061.; Spaeth E.L., Dembinski J.L., Sasser A.K., Watson K., Klopp A., Hall B., Andreeff M., Marini F. Mesenchymal stem cell transition to tumorassociated fi broblasts contributes to fi brovascular network expansion and tumor progression. PLoS One 2009;4(4):e4992. doi:10.1371/journal.pone.0004992.; Mi Z., Bhattacharya S.D., Kim V.M., Guo H., Talbot L.J., Kuo P.C. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 2011;32(4):477–87. doi:10.1093/carcin/bgr009.; Escobar P., Bouclier C., Serret J., Bieche I., Brigitte M., Caicedo A., Sanchez E., Vacher S., Vignais M.L., Bourin P., Genevieve D., Molina F., Jorgensen C., Lazennec G. IL-1beta produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production. Oncotarget 2015;6(30):29034–47. doi:10.18632/oncotarget.4732.; Halpern J.L., Kilbarger A., Lynch C.C. Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor. Cancer Lett 2011;308(1):91–9. doi:10.1016/j.canlet.2011.04.018.; Wang J., Wang Y., Wang S., Cai J., Shi J., Sui X., Cao Y., Huang W., Chen X., Cai Z., Li H., Bardeesi A.S., Zhang B., Liu M., Song W., Wang M., Xiang A.P. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget 2015;6(40):42825–37. doi:10.18632/oncotarget.5739.; Peinado H., Aleckovic M., Lavotshkin S., Matei I., Costa-Silva B., Moreno-Bueno G., Hergueta-Redondo M., Williams C., Garcia-Santos G., Ghajar C., Nitadori-Hoshino A., Hoff man C., Badal K., Garcia B.A., Callahan M.K., Yuan J., Martins V.R., Skog J., Kaplan R.N., Brady M.S., Wolchok J.D., Chapman P.B., Kang Y., Bromberg J., Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012;18(6):883–91. doi:10.1038/nm.2753.; Shi S., Zhang Q., Xia Y., You B., Shan Y., Bao L., Li L., You Y., Gu Z. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am J Cancer Res 2016;6(2):459–72. PMID: 27186416.; Barcellos-de-Souza P., Comito G., Pons-Segura C., Taddei M.L., Gori V., Becherucci V., Bambi F., Margheri F., Laurenzana A., Del Rosso M., Chiarugi P. Mesenchymal Stem Cells are Recruited and Activated into Carcinoma Associated Fibroblasts by Prostate Cancer Microenvironment-Derived TGF-beta1. Stem Cells 2016;34(10):2536–47. doi:10.1002/stem.2412.; McAndrews K.M., McGrail D.J., Ravikumar N., Dawson M.R. Mesenchymal Stem Cells Induce Directional Migration of Invasive Breast Cancer Cells through TGF-β. Sci Rep 2015;5:16941. doi:10.1038/srep16941.; Berger L., Shamai Y., Skorecki K.L., Tzukerman M. Tumor Specifi c Recruitment and Reprogramming of Mesenchymal Stem Cells in Tumorigenesis. Stem Cells 2016;34(4):1011–26. doi:10.1002/stem.2269.; Wang W., Zhong W., Yuan J., Yan C., Hu S., Tong Y., Mao Y., Hu T., Zhang B., Song G. Involvement of Wnt/beta-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma. Oncotarget 2015;6(39):42276–89. doi:10.18632/oncotarget.5514.; Takam Kamga P., Bassi G., Cassaro A., Midolo M., Di Trapani M., Gatti A., Carusone R., Resci F., Perbellini O., Gottardi M., Bonifacio M., Nwabo Kamdje A.H., Ambrosetti A., Krampera M. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia. Oncotarget 2016;7(16):21713–27. doi:10.18632/oncotarget.7964.; Yulyana Y., Ho I.A., Sia K.C., Newman J.P., Toh X.Y., Endaya B.B., Chan J.K., Gnecchi M., Huynh H., Chung A.Y., Lim K.H., Leong H.S., Iyer N.G., Hui K.M., Lam P.Y. Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1R/PI3K/ Akt signaling, Mol Ther 2015;23(4):746–56. doi:10.1038/mt.2015.13.; Qiao L., Xu Z.L., Zhao T.J., Ye L.H., Zhang X.D. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signaling. Cancer Lett 2008;269(1):67–77. doi:10.1016/j.canlet.2008.04.032.; Attar-Schneider O., Zismanov V., Drucker L., Gottfried M. Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation. Tumour Biol 2016;37(4):4755–65. doi:10.1007/s13277-015-4304-3.; Lee J.K., Park S.R., Jung B.K., Jeon Y.K., Lee Y.S., Kim M.K., Kim Y.G., Jang J.Y., Kim C.W. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 2013;8(12):e84256. doi:10.1371/journal.pone.0084256.; Lou G., Song X., Yang F., Wu S., Wang J., Chen Z., Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015;8:122. doi:10.1186/s13045-015-0220-7.; McLean K., Gong Y., Choi Y., Deng N., Yang K., Bai S., Cabrera L., Keller E., McCauley L., Cho K.R., Buckanovich R.J. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 2011;121(8):3206–19. doi:10.1172/JCI45273.; Coffman L.G., Choi Y.J., McLean K., Allen B.L., di Magliano M.P., Buckanovich R.J. Human carcinoma associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop. Oncotarget 2016;7(6):6916–32. doi:10.18632/oncotarget.6870.; Cuiffo B.G., Campagne A., Bell G.W., Lembo A., Orso F., Lien E.C., Bhasin M.K., Raimo M., Hanson S.E., Marusyk A., El-Ashry D., Hematti P., Polyak K., Mechta-Grigoriou F., Mariani O., Volinia S., Vincent-Salomon A., Taverna D., Karnoub A.E. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breastcancer metastasis. Cell Stem Cell 2014;15(6):762–74. doi:10.1016/j.stem.2014.10.001.; Li H.J., Reinhardt F., Herschman H.R., Weinberg R.A. Cancerstimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2012;2(9):840–55. doi:10.1158/2159-8290.CD-12-0101.; Liu S., Ginestier C., Ou S.J., Clouthier S.G., Patel S.H., Monville F., Korkaya H., Heath A., Dutcher J., Kleer C.G., Jung Y., Dontu G., Taichman R., Wicha M.S. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011;71(2):614–24. doi:10.1158/0008-5472.CAN-10-0538.; Wu X.B., Liu Y., Wang G.H., Xu X., Cai Y., Wang H.Y., Li Y.Q., Meng H.F., Dai F., Jin J.D. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-kappaB activation. Sci Rep 2016;6:21420. doi:10.1038/srep21420.; Tsai K.S., Yang S.H., Lei Y.P., Tsai C.C., Chen H.W., Hsu C.Y., Chen L.L., Wang H.W., Miller S.A., Chiou S.H., Hung M.C., Hung S.C. Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 2011;141(3):1046–56. doi:10.1053/j.gastro.2011.05.045.; Luo J., Lee S.O., Liang L., Huang C.K., Li L., Wen S., Chang C. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene 2014;33(21):2768–78. doi:10.1038/onc.2013.233.; Yang Y., Otte A., Hass R. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with diff erent tumor cell lines. Stem Cells Dev 2015;24(10):1205–22. doi:10.1089/scd.2014.0413.; Caicedo A., Fritz V., Brondello J.M., Ayala M., Dennemont I., Abdellaoui N., de Fraipont F., Moisan A., Prouteau C.A., Boukhaddaoui H., Jorgensen C., Vignais M.L. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 2015;5:9073. doi:10.1038/srep09073.; Martin F.T., Dwyer R.M., Kelly J., Khan S., Murphy J.M., Curran C., Miller N., Hennessy E., Dockery P., Barry F.P., O’Brien T., Kerin M.J. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 2010;124(2):317–26. doi:10.1007/s10549-010-0734-1.; Iser I.C., Ceschini S.M., Onzi G.R., Bertoni A.P., Lenz G., Wink M.R. Conditioned Medium from AdiposeDerived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro. Mol Neurobiol 2016;53(10):7184–99. doi:10.1007/s12035-015-9585-4.; Mishra P.J., Mishra P.J., Humeniuk R., Medina D.J., Alexe G., Mesirov J.P., Ganesan S., Glod J.W., Banerjee D. Carcinoma-Associated Fibroblast-Like Differentiation of Human Mesenchymal Stem Cells. Cancer Res 2008;68(11):4331–9. doi:10.1158/0008-5472.CAN-08-0943.; Ohkouchi S., Block G.J., Katsha A.M., Kanehira M., Ebina M., Kikuchi T., Saijo Y., Nukiwa T., Prockop D.J. Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Mol Ther 2012;20(2):417–23. doi:10.1038/mt.2011.259.; Chowdhury R., Webber J.P., Gurney M., Mason M.D., Tabi Z., Clayton A. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget 2015;6(2):715–31. doi:10.18632/oncotarget.2711.; Al-toub M., Vishnubalaji R., Hamam R., Kassem M., Aldahmash A., Alajez N.M. CDH1 and IL1-beta expression dictates FAK and MAPKKdependent cross-talk between cancer cells and human mesenchymal stem cells. Stem Cell Res Ther 2015;6(1):135. doi:10.1186/s13287-015-0123-0.; Anton K., Banerjee D., Glod J. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One 2012;7(4):e35036. doi:10.1371/journal.pone.0035036.; Ferrand J., Noel D., Lehours P., Prochazkova-Carlotti M., Chambonnier L., Menard A., Megraud F., Varon C. Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One 2011;6(5):e19569. doi:10.1371/journal.pone.0019569.; Rappa G., Mercapide J., Lorico A. Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. Am J Pathol 2012;180(6):2504–15. doi:10.1016/j.ajpath.2012.02.020.; Quante M., Tu S.P., Tomita H., Gonda T., Wang S.S., Takashi S., Baik G.H., Shibata W., Diprete B., Betz K.S., Friedman R., Varro A., Tycko B., Wang T.C. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011;19(2):257–72. doi:10.1016/j.ccr.2011.01.020.; Tomchuck S.L., Zwezdaryk K.J., Coffelt S.B., Waterman R.S., Danka E.S., Scandurro A.B. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 2008;26(1):99–107. doi:10.1634/stemcells.2007-0563.; Waterman R.S., Tomchuck S.L., Henkle S.L., Betancourt A.M. A new mesenchymal stem cell (MSC) paradigm: polarization into a proinflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 2010;5(4):e10088. doi:10.1371/journal.pone.0010088.; Waterman R.S., Henkle S.L., Betancourt A.M. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2- treatment promotes tumor growth and metastasis. PLoS One 2012;7(9):e45590. doi:10.1371/journal.pone.0045590.; Griffin M.D., Elliman S.J., Cahill E., English K., Ceredig R., Ritter T. Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots? Stem Cells 2013;31(10):2033–41. doi:10.1002/stem.1452.; Djouad F., Plence P., Bony C., Tropel P., Apparailly F., Sany J., Noel D., Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102(10):3837–44. doi:10.1182/blood-2003-04-1193.; Ljujic B., Milovanovic M., Volarevic V., Murray B., Bugarski D., Przyborski S., Arsenijevic N., Lukic M.L., Stojkovich M. Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice. Sci Rep 2013;3:2298. doi:10.1038/srep02298.; Nemeth K., Leelahavanichkul A., Yuen P.S., Mayer B., Parmelee A., Doi K., Robey P.G., Leelahavanichkul K., Koller B.H., Brown J.M., Hu X., Jelinek I., Star R.A., Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009;15(1):42–9. doi:10.1038/nm.1905.; Spaggiari G.M., Abdelrazik H., Becchetti F., Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSCderived prostaglandin E2. Blood 2009;113(26):6576–83. doi:10.1182/blood-2009-02-203943.; Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105(4):1815–22. doi:10.1182/blood-2004-04-1559.; Montesinos J.J., de L. Mora-Garcia M., Mayani H., Flores-Figueroa E., Garcia-Rocha R., Fajardo-Orduna G.R., Castro-Manrreza M.E., Weiss-Steider B., Monroy-Garcia A. In vitro evidence of the presence of mesenchymal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells Dev 2013;22(18):2508–19. doi:10.1089/scd.2013.0084.; Razmkhah M., Jaberipour M., Erfani N., Habibagahi M., Talei A.R., Ghaderi A. Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-beta1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell Immunol 2011;266(2):116–22. doi:10.1016/j.cellimm.2010.09.005.; Mellor A.L., Munn D.H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today 1999;20(10):469–73. doi:10.1016/s0167-5699(99)01520-0.; Uyttenhove C., Pilotte L., Theate I., Stroobant V., Colau D., Parmentier N., Boon T., van den Eynde B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003;9(10):1269–74. doi:10.1038/nm934.; Meisel R., Zibert A., Laryea M., Gobel U., Daubener W., Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004;103(12):4619–21. doi:10.1182/blood-2003-11-3909.; Maby-El Hajjami H., Ame-Thomas P., Pangault C., Tribut O., DeVos J., Jean R., Bescher N., Monvoisin C., Dulong J., Lamy T., Fest T., Tarte K. Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase. Cancer Res 2009;69(7):3228–37. doi:10.1158/0008-5472.CAN-08-3000.; Han Z., Tian Z., Lv G., Zhang L., Jiang G., Sun K., Wang C., Bu X., Li R., Shi Y., Wu M., Wei L. Immunosuppressive eff ect of bone marrowderived mesenchymal stem cells in infl ammatory microenvironment favours the growth of B16 melanoma cells. J Cell Mol Med 2011;15(11):2343–52. doi:10.1111/j.1582-4934.2010.01215.x.; Ren G., Zhao X., Wang Y., Zhang X., Chen X., Xu C., Yuan Z.R., Roberts A.I., Zhang L., Zheng B., Wen T., Han Y., Rabson A.B., Tischfi eld J.A., Shao C., Shi Y. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell 2012;11(6):812–24. doi:10.1016/j.stem.2012.08.013.; Guilloton F., Caron G., Menard C., Pangault C., Ame-Thomas P., Dulong J., De Vos J., Rossille D., Henry C., Lamy T., Fouquet O., Fest T., Tarte K. Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood 2012;119(11):2556–67. doi:10.1182/blood-2011-08-370908.; Daverey A., Drain A.P., Kidambi S. Physical Intimacy of Breast Cancer Cells with Mesenchymal Stem Cells Elicits Trastuzumab Resistance through Src Activation. Sci Rep 2015;5:13744. doi:10.1038/srep13744.; Skolekova S., Matuskova M., Bohac M., Toro L., Durinikova E., Tyciakova S., Demkova L., Gursky J., Kucerova L. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor eff ect in breast cancer cells. Cell Commun Signal 2016;14:4. doi:10.1186/s12964-016-0127-0.; Teng I.W., Hou P.C., Lee K.D., Chu P.Y., Chu P.Y., Yeh K.T., Jin V.X., Tseng M.J., Tsai S.J., Chang Y.S., Wu C.S., Sun H.S., Tsai K.D., Jeng L.B., Nephew K.P., Huang T.H., Hsiao S.H., Leu Y.W. Targeted methylation of two tumor suppressor genes is suffi cient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res 2011;71(13):4653–63. doi:10.1158/0008-5472.CAN-10-3418.; Ono M., Kosaka N., Tominaga N., Yoshioka Y., Takeshita F., Takahashi R.U., Yoshida M., Tsuda H., Tamura K., Ochiya T. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 2014;7(332):ra63. doi:10.1126/scisignal.2005231.; Bliss S.A., Sinha G., Sandiford O., Williams L., Engelberth D.J., Guiro K., Isenalumhe L.L., Greco S.J., Ayer S., Bryan M., Kumar R., Ponzio N., Rameshwar P. Mesenchymal stem cell-derived exosomes stimulates cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res 2016;76(19):5832–44. doi:10.1158/0008-5472.CAN-16-1092.; Roodhart J.M., Daenen L.G., Stigter E.C., Prins H.J., Gerrits J., Houthuijzen J.M., Gerritsen M.G., Schipper H.S., Backer M.J., van Amersfoort M., Vermaat J.S., Moerer P., Ishihara K., Kalkhoven E., Beijnen J.H., Derksen P.W., Medema R.H., Martens A.C., Brenkman A.B., Voest E.E. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 2011;20(3):370–83. doi:10.1016/j.ccr.2011.08.010.; Sugrue T., Brown J.A., Lowndes N.F., Ceredig R. Multiple facets of the DNA damage response contribute to the radioresistance of mouse mesenchymal stromal cell lines. Stem Cells 2013;31(1):137–45. doi:10.1002/stem.1222.; Beckermann B.M., Kallifatidis G., Groth A., Frommhold D., Apel A., Mattern J., Salnikov A.V., Moldenhauer G., Wagner W., Diehlmann A., Saff rich R., Schubert M., Ho A.D., Giese N., Buchler M.W., Friess H., Buchler P., Herr I. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008;99(4):622–31. doi:10.1038/sj.bjc.6604508.; Wang H.H., Cui Y.L., Zaorsky N.G., Lan J., Deng L., Zeng X.L., Wu Z.Q., Tao Z., Guo W.H., Wang Q.X., Zhao L.J., Yuan Z.Y., Lu Y., Wang P., Meng M.B. Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Lett 2016;375(2):349–59. doi:10.1016/j.canlet.2016.02.033.; Zhu W., Huang L., Li Y., Zhang X., Gu J., Yan Y., Xu X., Wang M., Qian H., Xu W. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 2012;315(1):28–37. doi:10.1016/j.canlet.2011.10.002.; Huang W.H., Chang M.C., Tsai K.S., Hung M.C., Chen H.L., Hung S.C. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 2013;32(37):4343–54. doi:10.1038/onc.2012.458.; Kozlowski L., Zakrzewska I., Tokajuk P., Wojtukiewicz M.Z. Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst 2003;48:82–4. PMID: 14737948.; Ho I.A., Toh H.C., Ng W.H., Teo Y.L., Guo C.M., Hui K.M., Lam P.Y. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 2013;31(1):146–55. doi:10.1002/stem.1247.; Roccaro A.M., Sacco A., Maiso P., Azab A.K., Tai Y.T., Reagan M., Azab F., Flores L.M., Campigotto F., Weller E., Anderson K.C., Scadden D.T., Ghobrial I.M. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013;123(4):1542–55. doi:10.1172/JCI66517.; Sun B., Roh K-H., Park J-P., Lee S-R., Park S-B., Jung J-W., Kang S-K., Lee Y-S., Kang K-S. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 2009;11(3):289–98, 1 p following 298. doi:10.1080/14653240902807026.; Qiao L., Xu Z., Zhao T., Zhao Z., Shi M., Zhao R.C., Ye L., Zhang X. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008;18(4):500–7. doi:10.1038/cr.2008.40.; Otsu K., Das S., Houser S.D., Quadri S.K., Bhattacharya S., Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009;113(18):4197–205. doi:10.1182/blood-2008-09-176198.; Lee R.H., Kim B.C., Choi I.S., Kim H., Choi H.S., Suh K.T., Bae Y.C., Jung J.S. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004;14(4–6):311–24. doi:10.1159/000080341.; Wagner W., Wein F., Seckinger A., Frankhauser M., Wirkner U., Krause U., Blake J., Schwager C., Eckstein V., Ansorge W., Ho A.D. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005;33(11):1402–16. doi:10.1016/j.exphem.2005.07.003.; Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S., Keating A. Clarifi cation of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 2005;7(5):393–5. doi:10.1080/14653240500319234.; Riekstina U., Cakstina I., Parfejevs V., Hoogduijn M., Jankovskis G., Muiznieks I., Muceniece R., Ancans J. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 2009;5(4):378–86. doi:10.1007/s12015-009-9094-9.; Brennen W.N., Chen S., Denmeade S.R., Isaaks J.T. Quantifi cation of Mesenchymal Stem Cells (MSCs) at sites of human prostate cancer. Oncotarget 2013;4(1):106–17. doi:10.18632/oncotarget.805.; Lee M.W., Ryu S., Kim D.S., Lee J.W., Sung K.W., Koo H.H., Yoo K.H. Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia 2019;33(3):597–611.; Pessina A., Piccirillo M., Mineo E., Catalani P., Gribaldo L., Marafante E., Neri M.G., Raixnondi A. Role of SR-4987 stromal cells in the modulation of doxorubicin toxicity to in vitro granulocyte-macrophage progenitors (CFU-GM). Life Sci 1993;65(5):513–23. doi:10.1016/S0024-3205(99)00272-6.; Pascucci L., Cocce V., Bonomi A., Ami D., Ceccarelli P., Ciusani E., Viganò L., Locatelli A., Sisto F., Doglia S.M., Parati E., Bernardo M.E., Muraca M., Alessandr G., Bondiolotti G., Pessina A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 2014;192:262–70. doi:10.1016/j.jconrel.2014.07.042.; Cocce V., Farronato D., Brini A.T., Masia C., Giannì A.B., Piovani G., Sisto F., Alessandri G., Angiero F., Pessina A. Drug Loaded Gingival Mesenchymal Stromal Cells (GinPa-MSCs) Inhibit In Vitro Proliferation of Oral Squamous Cell Carcinoma. Sci Rep 2017;7(1):9376. doi:10.1038/s41598-017-09175-4.; Bonomi A., Steimberg N., Benetti A., Berenzi A., Alessandri G., Pascucci L., Boniotti J., Coccè V., Sordi V., Pessina A., Mazzoleni G. Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system. Hematol Oncol 2017;35(4):693–702. doi:10.1002/hon.2306.; Енукашвили Н.И., Коткас И.Е., Иволгин Д.А., Боголюбов Д.С., Котова А.В., Боголюбова И.О., Багаева В.В., Левчук К.А., Масленникова И.И., Артамонов А.Ю., Марченко Н.В., Миндукшев И.В. Детектирование клеток, содержащих интернализованные мультидоменные магнитные наночастицы оксида железа (II, III), методом магнитно-резонансной томографии. Журнал технической физики 2020;90(9):1418–27.; Roger M., Clavreul A., Venier-Julienne M.C., Passirani C., Sindji L., Schiller P., Montero-Menei C., Menei P. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 2010;31(32):8393–401. doi:10.1016/j.biomaterials.2010.07.048.; Li Y., Zhou Y., Li X., Sun J., Ren Z., Wen W., Yang X., Han G. A Facile Approach to Upconversion Crystalline CaF2 : Yb(3+),Tm(3+)@mSiO2 Nanospheres for Tumor Therapy. RSC Adv 2016;6(44):38365–70. doi:10.1039/C6RA04167A.; Banerji S.K., Hayes M.A. Examination of nonendocytotic bulk transport of nanoparticles across phospholipid membranes. Langmuir 2007;23(6):3305–13. doi:10.1021/la0622875.; Sadhukha T., O’Brien T.D., Prabha S. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers. J Control Release 2014;196:243–51. doi:10.1016/j.jconrel.2014.10.015.; Li L., Guan Y., Liu H., Hao N., Liu T., Meng X., Fu C., Li Y., Qu Q., Zhang Y., Ji S., Chen L., Chen D., Tang F. Silica nanorattledoxorubicinanchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 2011;5(9):7462–70. doi:10.1021/nn202399w.; Wang W., Li W., Ou L., Flick E., Mark P., Nesselmann C., Lux C.A., Gatzen H-H., Kaminski A., Liebold A., Lützow K., Lendlein A., Li R-K., Steinhoff G., Ma N. Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients. J Cell Mol Med 2011;15(9):1989–98. doi:10.1111/j.1582-4934.2010.01130.x.; Huang X., Zhang F., Wang H., Niu G., Choi K.Y., Swierczewska M., Zhang G., Gao H., Wang Z., Zhu L., Choi H.S., Lee S., Chen X. Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials 2013;34(7):1772–80. doi:10.1016/j.biomaterials.2012.11.032.; Layek B., Sadhukha T., Panyam J., Prabha S. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Effi cacy of Anticancer Drug Through True Active Tumor Targeting. Mol Cancer Ther 2018;17(6):1196–206. doi:10.1158/1535-7163.MCT-17-0682.; Moku G., Layek B., Trautman L., Putnam S. Improving Payload Capacity and Anti-Tumor Effi cacy of Mesenchymal Stem Cells Using TAT Peptide Functionalized Polymeric Nanoparticles. Cancers (Basel) 2019;11(4):491. doi:10.3390/cancers11040491.; Marofi F., Vahedi G., Biglari A., Esmaeilzadeh A., Athari S.S. Mesenchymal Stromal/Stem Cells: A New Era in the Cell-Based Targeted Gene Therapy of Cancer. Front Immunol 2017;8:1770. doi:10.3389/fimmu.2017.01770.; Zhang J., Kale V., Chen M. Gene-directed enzyme prodrug therapy. AAPS J 2015;17(1):102–10. doi:10.1208/s12248-014-9675-7.; Tsao A.S., Kim E.S., Hong W.K. Chemoprevention of cancer. CA Cancer J Clin 2004;54(3):150–80. doi:10.3322/canjclin.54.3.150.; Kucerova L., Altanerova V., Matuskova M., Tyciakova S., Altaner C. Adipose Tissue-Derived Human Mesenchymal Stem Cells Mediated Prodrug Cancer Gene Therapy. Cancer Res 2007;67(13):6304–13. doi:10.1158/0008-5472.CAN-06-4024.; Alieva M., Bago J.R., Aguilar E., Soler-Botija C., Villa O.F., Molet J., Gambhir S.S., Rubio N., Blanco J. Glioblastoma therapy with cytotoxic mesenchymal stromal cells optimized by bioluminescence imaging of tumor and therapeutic cell response. PloS One 2012;7(4):e35148. doi:10.1371/journal.pone.0035148.; Kucerova L., Matuskova M., Pastorakova A., Tyciakova S., Jakubikova J., Bohovic R., Altanerova V., Altaner C. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 2008;10(10):1071–82. doi:10.1002/jgm.1239.; Cavarretta I.T., Altanerova V., Matuskova M., Kucerova L. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 2010;18(1):223–31. doi:10.1038/mt.2009.237.; Martinez-Quintanilla J., Bhere D., Heidari P., He D., Mahmood U., Shah K. Therapeutic effi cacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells 2013;31(8):1706–14. doi:10.1002/stem.1355.; Studeny M., Marini F.C., Champlin R.E., Zompetta C., Fidler I.J., Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62(13):3603–8. PMID: 12097260.; Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Delivery Rev 2012;64(8):739–48. doi:10.1016/j.addr.2011.06.010.; Chen X., Lin X., Zhao J., Shi W., Zhang H., Wang Y., Kan B., Du B., Wang B., Wei Y., Liu Y., Zhao X. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine geneengineered MSCs. Mol Ther 2008;16(4):749–56. doi:10.1038/mt.2008.3.; Duan X., Guan H., Cao Y., Kleinerman E.S. Murine bone marrowderived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer 2009;115(1):13–22. doi:10.1002/cncr.24013.; Gao P., Ding Q., Wu Z., Jiang H., Fang Z. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 2010;290(2):157–66. doi:10.1016/j.canlet.2009.08.031.; Ryu C.H., Park S.H., Park S.A., Kim S.M., Lim J.Y., Jeong C.H., Yoon W-S., Oh W-I., Sung Y.C., Jeun S-S. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord bloodderived mesenchymal stem cells. Hum. Gene Ther 2011;22(6):733–43. doi:10.1089/hum.2010.187.; Jing W., Chen Y., Lu L., Hu X., Shao C., Zhang Y., Zhou X., Zhou Y., Wu L., Liu R., Fan K., Jin G. Human umbilical cord blood-derived mesenchymal stem cells producing IL15 eradicate established pancreatic tumor in syngeneic mice. Mol Cancer Ther 2014;13(8):2127–37. doi:10.1158/1535-7163.MCT-14-0175.; Wong S.H.M., Kong W.Y., Fang C.M., Loh H.S., Chuah L-H., Abdullah S., Ngai S.C. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019;143:81–94. doi:10.1016/j.critrevonc.2019.08.008.; Grisendi G., Bussolari R., Cafarelli L., Petak I., Rasini V., Veronesi E., De Santis G., Spano C., Tagliazzucchi M., Barti-Juhasz H., Scarabelli L., Bambi F., Frassoldati A., Rossi G., Casali C., Morandi U., Horwitz E.M., Paolucci P., Conte P., Dominici M. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 2010;70(9):3718–29. doi:10.1158/0008-5472.CAN-09-1865.; Foppiani E.M., Candini O., Mastrolia I., Murgia A., Grisendi G., Samarelli A.V., Boscaini G., Pacchioni L., Pinelli M., De Santis G., Horwitz E.M., Veronesi E., Dominici M. Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors. Stem Cell Res Ther 2019;10(1):101. doi:10.1186/s13287-019-1200-6.; Starnoni M., Pinelli M., De Santis G. Surgical Wound Infections in Plastic Surgery: Simplifi ed, Practical, and Standardized Selection of High-risk Patients. Plast Reconstr Surg Glob Open 2019;7(4):e2202. doi:10.1097/GOX.0000000000002202.; Loebinger M.R., Eddaoudi A., Davies D., Janes S.M. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009;69(10):4134–42. doi:10.1158/0008-5472.CAN-08-4698.; Grisendi G., Bussolari R., Veronesi E., Piccinno S., Burns J.S., De Santis G., Loschi P., Pignatti M., Di Benedetto F., Ballarin R., Di Gregorio C., Guarneri V., Piccinini L., Horwitz E.M., Paolucci P., Conte P., Dominici M. Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers. Am J Cancer Res 2011;1(6):787–805. PMID: 22016827.; Grisendi G., Spano C., D’Souza N., Rasini V., Veronesi E., Prapa M., Petrachi T., Piccinno S., Rossignoli F., Burns J.S., Fiorcari S., Granchi D., Baldini N., Horwitz E.M., Guarneri V., Conte P., Paolucci P., Dominici M. Mesenchymal progenitors expressing TRAIL induce apoptosis in sarcomas. Stem Cells 2015;33(3):859–869. doi:10.1002/stem.1903.; D’Souza N., Rossignoli F., Golinelli G., Grisendi G., Spano C., Candini O., Osturu S., Catani F., Paolucci P., Horwitz E.M., Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015;13:186. doi:10.1186/s12916-015-0426-0.; Raja J., Ludwig J.M., Gettinger S.N., Schalper K.A., Kim H.S. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer 2018;6(1):140. doi:10.1186/s40425-018-0458-z.; Nakashima H., Kaur B., Chiocca E.A. Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev 2010;21(2-3):119–26. doi:10.1016/j.cytogfr.2010.02.004.; Yong R.L., Shinojima N., Fueyo J., Gumin J., Vecil G.G., Marini F.C., Bogler O., Andreeff M., Lang F.F. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 2009;69(23):8932–40. doi:10.1158/0008-5472.CAN-08-3873.; Xia X., Ji T., Chen P., Li X., Fang Y., Gao Q., Liao S., You L., Xu H., Ma Q., Wu P., Hu W., Wu M., Cao L., Li K., Weng Y., Han Z., Wei J., Liu R., Wang S., Xu G., Wang D., Zhou J., Ma D. Mesenchymal stem cells as carriers and amplifi ers in CRAd delivery to tumors. Mol Cancer 2011;10:134. doi:10.1186/1476-4598-10-134.; Ong H.T., Federspiel M.J., Guo C.M., Ooi L.L., Russell S.J., Peng K.W., Hui K.M. Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. J Hepatol 2013;59(5):999–1006. doi:10.1016/j.jhep.2013.07.010.; Kean T.J., Lin P., Caplan A.I., Dennis J.E. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells Int 2013;2013:732742. doi:10.1155/2013/732742.; Nakamizo A., Marini F., Amano T., Khan A., Studeny M., Gumin J., Chen J., Hentschel S., Vecil G., Dembinski J., Andreeff M., Lang F.F. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65(8):3307–18. doi:10.1158/0008-5472.CAN-04-1874.; Yang Y., Zhang X., Lin F., Xiong M., Fan D., Yuan X., Fan D., Yuan X., Lu Y., Song Y., Zhang Y., Hao M., Ye Z., Zhang Y., Wang J., Xiong D. Bispecifi c CD3-HAC carried by E1A-engineered mesenchymal stromal cells against metastatic breast cancer by blocking PD-L1 and activating T cells. J Hematol Oncol 2019;12(1):46. doi:10.1186/s13045-019-0723-8.; Knoop K., Schwenk N., Schmohl K., Muller A., Zach C., Cyran C., Carlsen J., Böning G., Bartenstein P., Göke B., Wagner E., Nelson P.J., Spitzweg C. Mesenchymal stem cell-mediated, tumor stroma-targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as theranostic gene. J Nucl Med 2015;56(4):600–6. doi:10.2967/jnumed.114.146662.; Komarova S., Roth J., Alvarez R., Curiel D.T., Pereboeva L. Targeting of mesenchymal stem cells to ovarian tumors via an artifi cial receptor. J Ovarian Res 2010;3:12. doi:10.1186/1757-2215-3-12.; De Becker A., Riet I.V. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells 2016;8(3):73–87. doi:10.4252/wjsc.v8.i3.73.; Roth J.C., Curiel D.T., Pereboeva L. Cell vehicle targeting strategies. Gene Ther 2008;15(10):716–29. doi:10.1038/gt.2008.38.; Arbab A.S., Jordan E.K., Wilson L.B., Yocum G.T., Lewis B.K., Frank J.A. In vivo traffi cking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther 2004;15(4):351–60. doi:10.1089/104303404322959506.; Fiarresga A., Mata M.F., Cavaco-Goncalves S., Selas M., Simoes I.N., Oliveira E., Carrapiço B., Cardim N., Cabral J.M.S., Ferreira R.C., da Silva C.L. Intracoronary Delivery of Human Mesenchymal/Stromal Stem Cells: Insights from Coronary Microcirculation Invasive Assessment in a Swine Model. PloS One 2015;10(10):e0139870. doi:10.1371/journal.pone.0139870.; Silva L.H., Cruz F.F., Morales M.M., Weiss D.J., Rocco P.R. Magnetic targeting as a strategy to enhance therapeutic eff ects of mesenchymal stromal cells. Stem Cell Res Ther 2017;8(1):58. doi:10.1186/s13287-017-0523-4.; Rosenblum D., Joshi N., Tao W., Karp J.M., Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018;9(1):1410. doi:10.1038/s41467-018-03705-y.; Kim S.M., Kim D.S., Jeong C.H., Kim J.H., Jeon H.B., Kwon S-J., Jeun S-S., Yang Y.S., Oh W., Chang J.W. CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas. Biochem Biophys Res Commun 2011;407(4):741–6. doi:10.1016/j.bbrc.2011.03.093.; Liu B., Yan L., Zhou M. Target selection of CAR T cell therapy in accordance with the TME for solid tumors. Am J Cancer Res 2019;9(2):228–41. PMID: 30906625.; Golinelli G., Grisendi G., Prapa M., Bestagno M., Spano C., Rossignoli F., Bambi F., Sardi I., Cellini M., Horwitz E.M., Feletti A., Pavesi G., Dominici M. Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther 2020;27(7-8):558–70. doi:10.1038/s41417-018-0062-x.; Balyasnikova I.V., Franco-Gou R., Mathis J.M., Lesniak M.S. Genetic modifi cation of mesenchymal stem cells to express a single-chain antibody against EGFRvIII on the cell surface. J Tissue Eng Regener Med 2010;4(4):247–58. doi:10.1002/term.228.; Segaliny A.I., Cheng J.L., Farhoodi H.P., Toledano M., Yu C.C., Tierra B., Hildebrand L., Liu L., Liao M.J., Cho J., Liu D., Sun L., Gulsen G., Su M-Y., Sah R.L., Zhao W. Combinatorial targeting of cancer bone metastasis using mRNA engineered stem cells. EBioMedicine 2019;45:39–57. doi:10.1016/j.ebiom.2019.06.047.; Zhu Y., Bassoff N., Reinshagen C., Bhere D., Nowicki M.O., Lawler S.E., Roux J., Shah K. Bi-specifi c molecule against EGFR and death receptors imultaneously targets proliferation and death pathways in tumors. Sci Rep 2017;7(1):2602. doi:10.1038/s41598-017-02483-9.; Einem J., Peter S., Gunther C., Volk H.-D., Grutz G., Salat C., Stoetzer O., Nelson P.J., Michl M., Modest D.P., Holch J.W., Angele M., Bruns C., Niess H., Heinemann V. Treatment of advanced gastrointestinal cancer with genetically modifi ed autologous mesenchymal stem cells – TREAT-ME-1 – a phase I, first in human, first in class trial. Oncotarget 2017;8:80156–66. doi:10.18632/oncotarget.20964.; Niess H., von Einem J.C., Thomas M.N., Michl M., Angele M.K., Huss R., Günther C., Nelson P.J., Bruns C.J., Heinemann V. Treatment of advanced gastrointestinal tumors with genetically modifi ed autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer 2015;15:237. doi:10.1186/s12885-015-1241-x.; Golinelli G., Mastrolia I., Aramini B., Masciale V., Pinelli M., Pacchioni L., Casari G., Dall’Ora M., Pereira-Soares M.B., Damasceno P.K.F., Silva D.N., Dominici M., Grisendi G. Arming Mesenchymal Stromal/ Stem Cells Against Cancer: Has the Time Come? Front Pharmacol 2020;11:529921. doi:10.3389/fphar.2020.529921.; Clinicaltrials.gov. Targeted Stem Cells Expressing TRAIL as a Therapy for Lung Cancer (TACTICAL) [Internet]. Available at: https://clinicaltrials.gov/ct2/show/NCT03298763. Date of access – 02.03.2021.; Clinicaltrials.gov. Mesenchymal stem cells (MSC) for ovarian cancer [Internet]. Available at: https://clinicaltrials.gov/ct2/show/NCT02530047. Date of access – 02.03.2021.; Clinicaltrials.gov. MV-NIS Infected Mesenchymal Stem Cells in Treating Patients With Recurrent Ovarian Cancer [Internet]. Available at: https://clinicaltrials.gov/ct2/show/NCT02068794. Date of access –02.03.2021.; Clinicaltrials.gov. Oncolytic Adenovirus DNX-2401 in Treating Patients With Recurrent High-Grade Glioma [Internet]. Available at: https://clinicaltrials.gov/ct2/show/NCT03896568. Date of access – 02.03.2021.; Spano C., Grisendi G., Golinelli G., Rossignoli F., Prapa M., Bestagno M., Candini O., Petrachi T., Recchia A., Miselli F., Rovesti G., Orsi G., Maiorana A., Manni P., Veronesi E., Piccinno M.S., Murgia A., Pinelli M., Horwitz E.M., Cascinu S., Conte P., Dominici M. Soluble TRAIL Armed Human MSC As Gene Therapy For Pancreatic Cancer. Sci Rep 2019;9(1):1788. doi:10.1038/s41598-018-37433-6.; Wang Y., Zhang Z., Chi Y., Zhang Q., Xu F., Yang Z., Meng L., Yang S., Yan S., Mao A., Zhang J., Yang Y., Wang S., Cui J., Liang L., Ji Y., Han Z-B., Fang X., Han Z.C. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 2013;4(12):e950. doi:10.1038/cddis.2013.480.; Айзенштадт А.А., Иволгин Д.А., Сказина М.А., Котелевская Е.А., Елсукова Л.В., Золина Т.Л., Пономарцев Н.В., Галактионов Н.К., Галембо И.А., Масленникова И.И., Енукашвили Н.И. Характеристики мезенхимных стромальных клеток пупочного канатика человека при длительном культивировании in vitro. Вестник СЗГМУ им. И.И. Мечникова 2018;10(1):11–9.; Tang Q., Chen Q., Lai X., Liu S., Chen Y., Zheng Z., Xie Q., Maldonado M., Cai Z., Qin S., Ho G., Ma L. Malignant Transformation Potentials of Human Umbilical Cord Mesenchymal Stem Cells Both Spontaneously and via 3-Methycholanthrene Induction. PLoS ONE 2013;8(12):e81844. doi:10.1371/journal.pone.0081844.; https://journal.nodgo.org/jour/article/view/692
-
20Academic Journal
Συγγραφείς: A. I. Stukan, A. Yu. Goryainova, E. V. Lymar, S. V. Sharov, D. V. Andreev, V. V. Antipova, А. И. Стукань, А. Ю. Горяинова, Е. В. Лымарь, С. В. Шаров, Д. В. Андреев, В. В. Антипова
Πηγή: Meditsinskiy sovet = Medical Council; № 20 (2021); 25-34 ; Медицинский Совет; № 20 (2021); 25-34 ; 2658-5790 ; 2079-701X
Θεματικοί όροι: циркулирующие опухолевые клетки, metastatic focus, pre-metastatic niche, CDK4/6-inhibitors, abemaciclib, epithelial-mesenchymal transition, circulating tumor cells, метастатический очаг, преметастатическая ниша, CDK4/6-ингибиторы, абемациклиб, эпителиально-мезенхимальный переход
Περιγραφή αρχείου: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/6576/5960; Baccelli I., Schneeweiss A., Riethdorf S., Stenzinger A., Schillert A., Vogel V. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31(6):539–544. https://doi.org/10.1038/nbt.2576.; Vanharanta S., Massagué J. Origins of metastatic traits. Cancer Cell. 2013;24(4):410–421. https://doi.org/10.1016/j.ccr.2013.09.007.; Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–252. https://doi.org/10.1038/nrc2618.; Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820-827. https://doi.org/10.1038/nature04186.; Law A.M.K., Valdes-Mora F., Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells. 2020;9(3):561. https://doi.org/10.3390/cells9030561.; Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4(1):11-22. https://doi.org/10.1038/nrc1252.; Chen W., Hoffmann AD, Liu H, Liu X. Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol. 2018;2(1):4. https://doi.org/10.1038/s41698-018-0047-0.; Najmeh S., Cools-Lartigue J., Rayes R., Gowing S., Vourtzoumis P., Bourdeau F. et al. Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions. Int J Cancer. 2017;140(10):2321–2330. https://doi.org/10.1002/ijc.30635.; Wculek S.K., Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature. 2015;528(7582):413– 417. https://doi.org/10.1038/nature16140.; Coffelt S.B. Kersten K., Doornebal C.W., Weiden J., Vrijland K., Hauet C.S. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345–348. https://doi.org/10.1038/nature14282.; Clever D., Roychoudhuri R., Constantinides M.G., Askenase M.H., Sukumar M., Klebanoff C.A. et al. Oxygen Sensing by T Cells Establishes an Immunologically Tolerant Metastatic Niche. Cell. 2016;166(5):1117– 1131.e14. https://doi.org/10.1016/j.cell.2016.07.032.; Monteiro A.C., Leal A.C., Gonçalves-Silva T., Mercadante A.C.T., Kestelman F., Chaves S.B. et al. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS ONE. 2013;8(7):e68171. https://doi.org/10.1371/journal.pone.0068171.; Olkhanud P.B., Damdinsuren B., Bodogai M., Gress R.E., Sen R., Wejksza K. et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4⁺ T cells to T-regulatory cells. Cancer Res. 2011;71(10):3505–3515. https://doi.org/10.1158/0008-5472.CAN-10-4316.; Na Y.R., Yoon Y.N., Son D.I., Seok S.H. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLoS ONE. 2013;8(5):e63451. https://doi.org/10.1371/journal.pone.0063451.; Bidwell B.N., Slaney C.Y., Withana N.P., Forster S., Cao Y., Loi S. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224–1231. https://doi.org/10.1038/nm.2830.; Inoue Y., Itoh Y., Sato K., Kawasaki F., Sumita C., Tanaka T. et al. Regulation of Epithelial-Mesenchymal Transition by E3 Ubiquitin Ligases and Deubiquitinase in Cancer. Curr Cancer Drug Targets. 2016;16(2):110– 118. https://doi.org/10.2174/1568009616666151112122126.; Zhang Z., Li J., Ou Y., Yang G., Deng K., Wang Q. et al. DK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism. Signal Transduct Target Ther. 2020;5(1):25. https://doi.org/10.1038/s41392-020-0118-x.; Du X., Song H., Shen N., Hua R., Yang G. The Molecular Basis of UbiquitinConjugating Enzymes (E2s) as a Potential Target for Cancer Therapy. Int J Mol Sci. 2021;22(7):3440. https://doi.org/10.3390/ijms22073440.; Wang W., Wu D., He X., Hu X., Hu C., Shen Z. et al. CCL18-induced HOTAIR upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 axis. Cancer Lett. 2019;460:18–28. https://doi.org/10.1016/j.canlet.2019.06.009.; Kim K.S., Jeong D., Sari I.N., Wijaya Y.T., Jun N., Lee S. et al. miR551b Regulates Colorectal Cancer Progression by Targeting the ZEB1 Signaling Axis. Cancers (Basel). 2019;11(5):735. https://doi.org/10.3390/cancers11050735.; Title A.C., Hong S-J., Pires N.D., Hasenöhrl L., Godbersen S., StokarRegenscheit N. et al. Genetic dissection of the miR-200-Zeb1 axis reveals its importance in tumor differentiation and invasion. Nat Commun. 2018;9(1):4671. https://doi.org/10.1038/s41467-018-07130-z.; Chen A., Wong C.S., Liu M.C., House C.M., Sceneay J., Bowtell D.D., Thompson E.W., Möller A. The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer. Oncotarget. 2015;6(2):862–873. https://doi.org/10.18632/oncotarget.2696.; Zhang P., Wei Y., Wang L., Debeb B.G., Yuan Y., Zhang J. et al. ATMmediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16(9):864–875. https://doi.org/10.1038/ncb3013.; Clague M.J., Urbé S., Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 2019;20(6):338–352. https://doi.org/10.1038/s41580-019-0099-1.; Harris I.S., Endress J.E., Coloff J.L., Selfors L.M., McBrayer S.K., Rosenbluth J.M. et al. Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer Cells upon Glutathione Depletion. Cell Metab. 2019;29(5):1166–1181.e6. https://doi.org/10.1016/j.cmet.2019.01.020.; Zhang Q., Zhang Z.Y., Du H., Li S.Z., Tu R., Jia Y.F. et al. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ. 2019;26(11):2300–2313. https://doi.org/10.1038/s41418-019-0303-z.; Cardoso F., Senkus E., Costa A., Papadopoulos E., Aapro M., André F. et al. 4th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4). Ann Oncol. 2018;29(8):1634–1657. https://doi.org/10.1093/annonc/mdy192.; Thomssen C., Lüftner D., Untch M., Haidinger R., Würstlein R., Harbeck N. et al. International Consensus Conference for Advanced Breast Cancer, Lisbon 2019: ABC5 Consensus - Assessment by a German Group of Experts. Breast Care (Basel). 2020;15(1):82–95. https://doi.org/10.1159/000505957.; Paluch-Shimon S., Cardoso F., Partridge A.H., Abulkhair O., Azim H.A. Jr., Bianchi-Micheli G. et al. ESO-ESMO 4th International Consensus Guidelines for Breast Cancer in Young Women (BCY4). Ann Oncol. 2020;31(6):674–696. https://doi.org/10.1016/j.annonc.2020.03.284.; Rugo H.S., Rumble R.B., Macrae E., Barton D.L., Connolly H.K., Dickler M.N. et al. Endocrine Therapy for Hormone Receptor-Positive Metastatic Breast Cancer: American Society of Clinical Oncology Guideline. J Clin Oncol. 2016;34(25):3069–3103. https://doi.org/10.1200/ JCO.2016.67.1487.; Sledge G.W. Jr., Toi M., Neven P., Sohn J., Inoue K., Pivot X. et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J Clin Oncol. 2017;35(25):2875–2884. https://doi.org/10.1200/JCO.2017.73.7585.; Sledge G.W. Jr., Toi M., Neven P., Sohn J., Inoue K., Pivot X. et al. The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor-Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine Therapy-MONARCH 2: A Randomized Clinical Trial. JAMA Oncol. 2020;6(1):116–124. https://doi.org/10.1001/jamaoncol.2019.4782.; Jiang Z., Hu X., Zhang Q., Sun T., Yin Y., Li H. et al. MONARCHplus: A phase III trial of abemaciclib plus nonsteroidal aromatase inhibitor (NSAI) or fulvestrant (F) for women with HR1/HER2- advanced breast cancer (ABC). Ann Oncol. 2019;30(5 Suppl.):v863. https://doi.org/10.1093/annonc/mdz394.014.; Leo A.D., O’Shaughnessy J., Sledge G.W. Jr., Martin M., Lin Y., Frenzel M. et al. Prognostic characteristics in hormone receptor-positive advanced breast cancer and characterization of abemaciclib efficacy. NPJ Breast Cancer. 2018;4:41. https://doi.org/10.1038/s41523-018-0094-2.; Johnston S.R.D., Harbeck N., Hegg R., Toi M., Martin M., Shao Z.M. et al. Abemaciclib Combined With Endocrine Therapy for the Adjuvant Treatment of HR+, HER2-, Node-Positive, High-Risk, Early Breast Cancer (monarchE). J Clin Oncol. 2020;38(34):3987–3998. https://doi.org/10.1200/JCO.20.02514.; Paluch-Shimon S., Lueck H., Beith J., Tokunaga E., Reyes Contreras J., de Sant’Ana R.O. et al. 153P Adjuvant endocrine therapy combined with abemaciclib in monarchE patients with high-risk early breast cancer: Disease characteristics and endocrine therapy choice by menopausal status. Ann Oncol. 2021;32(5 Suppl.):S427–S428. https://doi.org/10.1016/j.annonc.2021.08.434.