Εμφανίζονται 1 - 20 Αποτελέσματα από 20 για την αναζήτηση '"эпигенетическая регуляция"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The study was financially supported by the Russian Science Foundation under research project No. 22­74­10123. D.A. Chudakova’s work in the field of brain aging and neurodegeneration research was carried out with financial support from the Federal Medical­Biological Agency of Russian Federation.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 215­-227 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 215­-227 ; 2500-3259 ; 10.18699/vjgb-24-15

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4092/1829; Aguilera A., García-Muse T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell. 2012;46(2):115-124. DOI 10.1016/j.molcel.2012.04.009; Albani D., Ateri E., Mazzuco S., Ghilardi A., Rodilossi S., Biella G., Ongaro F., Antuono P., Boldrini P., Di Giorgi E., Frigato A., Durante E., Caberlotto L., Zanardo A., Siculi M., Gallucci M., Forloni G. Modulation of human longevity by SIRT3 single nucleotide polymorphisms in the prospective study “Treviso Longeva ( TRELONG).” Age (Dordr.). 2014;36(1):469-478. DOI 10.1007/s11357-013-9559-2; Bai W., Zhang X. Nucleus or cytoplasm? The mysterious case of SIRT1’s subcellular localization. Cell Cycle. 2016;15(24):33373338. DOI 10.1080/15384101.2016.1237170; Banerjee K.Kr., Ayyub C., Ali S.Z., Mandot V., Prasad N.G., KolthurSeetharam U. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep. 2012;2(6): 1485-1491. DOI 10.1016/j.celrep.2012.11.013; Barber M.F., Michishita-Kioi E., Xi Y., Tasselli L., Kioi M., Moqtaderi Z., Tennen R.I., Paredes S., Young N.L., Chen K., Struhl K., Garcia B.A., Gozani O., Li W., Chua K.F. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012;487(7405):114-118. DOI 10.1038/nature11043; Bellizzi D., Rose G., Cavalcante P., Covello G., Dato S., De Rango F., Greco V., Maggiolini M., Feraco E., Mari V., Franceschi C., Passarino G., De Benedictis G. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005;85(2):258-263. DOI 10.1016/j.ygeno.2004.11.003; Bergmann L., Lang A., Bross C., Altinoluk-Hambüchen S., Fey I., Overbeck N., Stefanski A., Wiek C., Kefalas A., Verhülsdonk P., Mielke C., Sohn D., Stühler K., Hanenberg H., Jänicke R.U., Scheller J., Reichert A.S., Ahmadian M.R., Piekorz R.P. Subcellular localization and mitotic interactome analyses identify SIRT4 as a centrosomally localized and microtubule associated protein. Cells. 2020; 9(9):1950. DOI 10.3390/cells9091950; Bi S., Liu Z., Wu Z., Wang Z., Liu X., Wang S., Ren J., Yao Y., Zhang W., Song M., Liu G.-H., Qu J. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell. 2020;11(7):483-504. DOI 10.1007/s13238-020-00728-4; Bosch-Presegué L., Raurell-Vila H., Marazuela-Duque A., Kane-Goldsmith N., Valle A., Oliver J., Serrano L., Vaquero A. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell. 2011;42(2):210-223. DOI 10.1016/j.molcel.2011.02.034; Brenner C. Sirtuins are not conserved longevity genes. Life Metab. 2022;1(2):122-133. DOI 10.1093/lifemeta/loac025; Bresque M., Cal K., Pérez-Torrado V., Colman L., Rodríguez-Duarte J., Vilaseca C., Santos L., Garat M.P., Ruiz S., Evans F., Dapueto R., Contreras P., Calliari A., Escande C. SIRT6 stabilization and cytoplasmic localization in macrophages regulates acute and chronic inflammation in mice. J. Biol. Chem. 2022;298(3):101711. DOI 10.1016/j.jbc.2022.101711; Brunet A., Sweeney L.B., Sturgill J.F., Chua K.F., Greer P.L., Lin Y., Tran H., Ross S.E., Mostoslavsky R., Cohen H.Y., Hu L.S., Cheng H.-L., Jedrychowski M.P., Gygi S.P., Sinclair D.A., Alt F.W., Greenberg M.E. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):20112015. DOI 10.1126/science.1094637; Bryk M., Banerjee M., Murphy M., Knudsen K.E., Garfinkel D.J., Curcio M.J. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 1997;11(2):255-269. DOI 10.1101/gad.11.2.255; Bugyei-Twum A., Ford C., Civitarese R., Seegobin J., Advani S.L., Desjardins J.-F., Kabir G., Zhang Y., Mitchell M., Switzer J., Thai K., Shen V., Abadeh A., Singh K.K., Billia F., Advani A., Gilbert R.E., Connelly K.A. Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc. Res. 2018;114(12):1629-1641. DOI 10.1093/cvr/cvy131; Burnett C., Valentini S., Cabreiro F., Goss M., Somogyvári M., Piper M.D., Hoddinott M., Sutphin G.L., Leko V., McElwee J.J., Vazquez-Manrique R.P., Orfila A.-M., Ackerman D., Au C., Vinti G., Riesen M., Howard K., Neri C., Bedalov A., Kaeberlein M., Sőti C., Partridge L., Gems D. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011;477(7365): 482-485. DOI 10.1038/nature10296; Cacabelos R., Carril J., Cacabelos N., Kazantsev A., Vostrov A., Corzo L., Cacabelos P., Goldgaber D. Sirtuins in Alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. Int. J. Mol. Sci. 2019;20(5):1249. DOI 10.3390/ijms20051249; Chatzidoukaki O., Stratigi K., Goulielmaki E., Niotis G., AkalestouClocher A., Gkirtzimanaki K., Zafeiropoulos A., Altmüller J., Topalis P., Garinis G.A. R-loops trigger the release of cytoplasmic ssDNAs leading to chronic inflammation upon DNA damage. Sci. Adv. 2021;7(47):eabj5769. DOI 10.1126/sciadv.abj5769; Chen S., Seiler J., Santiago-Reichelt M., Felbel K., Grummt I., Voit R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell. ;52(3):303-313. DOI 10.1016/j.molcel.2013.10.010; Crossley M.P., Song C., Bocek M.J., Choi J.-H., Kousorous J., Sathirachinda A., Lin C., Brickner J.R., Bai G., Lans H., Vermeulen W., Abu-Remaileh M., Cimprich K.A. R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response. Nature. 2023; 613(7942):187-194. DOI 10.1038/s41586-022-05545-9; Curry A.M., White D.S., Donu D., Cen Y. Human sirtuin regulators: The “success” stories. Front. Physiol. 2021;12:752117. DOI 10.3389/fphys.2021.752117; Diao Z., Ji Q., Wu Z., Zhang W., Cai Y., Wang Z., Hu J., Liu Z., Wang Q., Bi S., Huang D., Ji Z., Liu G.-H., Wang S., Song M., Qu J. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 2021;49(8):4203-4219. DOI 10.1093/nar/gkab161; Diaz-Perdigon T., Belloch F.B., Ricobaraza A., Elboray E.E., Suzuki T., Tordera R.M., Puerta E. Early sirtuin 2 inhibition prevents age- related cognitive decline in a senescence-accelerated mouse model. Neuropsychopharmacology. 2020;45(2):347-357. DOI 10.1038/s41386-019-0503-8; Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., Auwerx J., Hao Q., Lin H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334(6057):806-809. DOI 10.1126/science.1207861; Du Y., Hu H., Hua C., Du K., Wei T. Tissue distribution, subcellular localization, and enzymatic activity analysis of human SIRT5 isoforms. Biochem. Biophys. Res. Commun. 2018;503(2):763-769. DOI 10.1016/j.bbrc.2018.06.073; El Ramy R., Magroun N., Messadecq N., Gauthier L.R., Boussin F.D., Kolthur-Seetharam U., Schreiber V., McBurney M.W., Sassone-Corsi P., Dantzer F. Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cell. Mol. Life Sci. 2009;66(19):3219-3234. DOI 10.1007/s00018-009-0105-4; Eldridge M.J.G., Pereira J.M., Impens F., Hamon M.A. Active nuclear import of the deacetylase Sirtuin-2 is controlled by its C-terminus and importins. Sci. Rep. 2020;10(1):2034. DOI 10.1038/s41598020-58397-6; Eskandarian H.A., Impens F., Nahori M.-A., Soubigou G., Coppée J.-Y., Cossart P., Hamon M.A. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science. 2013; 341(6145):1238858. DOI 10.1126/science.1238858; Etchegaray J.-P., Chavez L., Huang Y., Ross K.N., Choi J., MartinezPastor B., Walsh R.M., Sommer C.A., Lienhard M., Gladden A., Kugel S., Silberman D.M., Ramaswamy S., Mostoslavsky G., Hochedlinger K., Goren A., Rao A., Mostoslavsky R. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine. Nat. Cell Biol. 2015; 17(5): 545-557. DOI 10.1038/ncb3147; Fabrizio P., Gattazzo C., Battistella L., Wei M., Cheng C., McGrew K., Longo V.D. Sir2 blocks extreme life-span extension. Cell. 2005; 123(4):655-667. DOI 10.1016/j.cell.2005.08.042; Fahie K., Hu P., Swatkoski S., Cotter R.J., Zhang Y., Wolberger C. Side chain specificity of ADP-ribosylation by a sirtuin. FEBS J. 2009;276(23):7159-7176. DOI 10.1111/j.1742-4658.2009.07427.x; Figarska S.M., Vonk J.M., Boezen H.M. SIRT1 polymorphism, longterm survival and glucose tolerance in the general population. PLoS One. 2013;8(3):e58636. DOI 10.1371/journal.pone.0058636; Finkel T., Deng C.-X., Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587-591. DOI 10.1038/nature08197; Flachsbart F., Croucher P.J.P., Nikolaus S., Hampe J., Cordes C., Schrei ber S., Nebel A. Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity. Exp. Gerontol. 2006; 41(1):98-102. DOI 10.1016/j.exger.2005.09.008; Ford E., Voit R., Liszt G., Magin C., Grummt I., Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20(9):1075-1080. DOI 10.1101/gad.399706; Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999;260(1):273-279. DOI 10.1006/bbrc.1999.0897; Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 2000;273(2): 793-798. DOI 10.1006/bbrc.2000.3000; Gottschling D.E., Aparicio O.M., Billington B.L., Zakian V.A. Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription. Cell. 1990;63(4):751-762. DOI 10.1016/0092-8674(90)90141-Z; Gray S.G., Ekström T.J. The human histone deacetylase family. Exp. Cell Res. 2001;262(2):75-83. DOI 10.1006/excr.2000.5080; Griswold A.J., Chang K.T., Runko A.P., Knight M.A., Min K.-T. Sir2 mediates apoptosis through JNK-dependent pathways in Drosophila. Proc. Natl. Acad. Sci. USA. 2008;105(25):8673-8678. DOI 10.1073/pnas.0803837105; Haigis M.C., Mostoslavsky R., Haigis K.M., Fahie K., Christodoulou D.C., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., Karow M., Blander G., Wolberger C., Prolla T.A., Weindruch R., Alt F.W., Guarente L. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell. 2006;126(5):941-954. DOI 10.1016/j.cell.2006.06.057; Hall H. R-loops in neuronal aging. Aging. 2023;15(17):8535-8536. DOI 10.18632/aging.205070; Heo J., Lim J., Lee S., Jeong J., Kang H., Kim Y., Kang J.W., Yu H.Y., Jeong E.M., Kim K., Kucia M., Waigel S.J., Zacharias W., Chen Y., Kim I.-G., Ratajczak M.Z., Shin D.-M. Sirt1 regulates DNA methylation and differentiation potential of embryonic stem cells by antagonizing Dnmt3l. Cell Rep. 2017;18(8):1930-1945. DOI 10.1016/j.celrep.2017.01.074; Herranz D., Muñoz-Martin M., Cañamero M., Mulero F., MartinezPastor B., Fernandez-Capetillo O., Serrano M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010;1(1):3. DOI 10.1038/ncomms1001; Hirvonen K., Laivuori H., Lahti J., Strandberg T., Eriksson J.G., Hackman P. SIRT6 polymorphism rs117385980 is associated with longevity and healthy aging in Finnish men. BMC Med. Genet. 2017; 18(1):41. DOI 10.1186/s12881-017-0401-z; Hou T., Tian Y., Cao Z., Zhang J., Feng T., Tao W., Sun H., Wen H., Lu Xiaopeng, Zhu Q., Li M., Lu X., Liu B., Zhao Y., Yang Y., Zhu W.-G. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation. Mol. Cell. 2022;82(21):4099-4115.e9. DOI 10.1016/j.molcel.2022.09.018; Ianni A., Hoelper S., Krueger M., Braun T., Bober E. Sirt7 stabilizes rDNA heterochromatin through recruitment of DNMT1 and Sirt1. Biochem. Biophys. Res. Commun. 2017;492(3):434-440. DOI 10.1016/j.bbrc.2017.08.081; Imai S., Armstrong C.M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795-800. DOI 10.1038/35001622; Imaoka N., Hiratsuka M., Osaki M., Kamitani H., Kambe A., Fukuoka J., Kurimoto M., Nagai S., Okada F., Watanabe T., Ohama E., Kato S., Oshimura M. Prognostic significance of sirtuin 2 protein nuclear localization in glioma: an immunohistochemical study. Oncol. Rep . 2012;28(3):923-230. DOI 10.3892/or.2012.1872; Isaka Y. Targeting TGF-β signaling in kidney fibrosis. Int. J. Mol. Sci. 2018;19(9):2532. DOI 10.3390/ijms19092532; Ivy J.M., Klar A.J., Hicks J.B. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 1986;6(2): 688-702. DOI 10.1128/MCB.6.2.688; Jeong J., Juhn K., Lee H., Kim S.-H., Min B.-H., Lee K.-M., Cho M.- H., Park G.-H., Lee K.-H. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med. 2007;39(1):8-13. DOI 10.1038/emm.2007.2; Jia B., Chen J., Wang Q., Sun X., Han J., Guastaldi F., Xiang S., Ye Q., He Y. SIRT6 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells through antagonizing DNMT1. Front. Cell Dev. Biol. 2021;9:648627. DOI 10.3389/fcell.2021.648627; Jiang H., Khan S., Wang Y., Charron G., He B., Sebastian C., Du J., Kim R., Ge E., Mostoslavsky R., Hang H.C., Hao Q., Lin H. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013;496(7443):110-113. DOI 10.1038/nature12038; Jiao F., Gong Z. The beneficial roles of SIRT1 in neuroinflammationrelated diseases. Oxid. Med. Cell. Longev. 2020;2020:6782872. DOI 10.1155/2020/6782872; Julien C., Tremblay C., Émond V., Lebbadi M., Salem N., Bennett D.A., Calon F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2009;68(1):48-58. DOI 10.1097/NEN.0b013e3181922348; Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570-2580. DOI 10.1101/gad.13.19.2570; Kawahara T.L.A., Michishita E., Adler A.S., Damian M., Berber E., Lin M., McCord R.A., Ongaigui K.C.L., Boxer L.D., Chang H.Y., Chua K.F. SIRT6 links histone H3 lysine 9 deacetylation to NF-κBdependent gene expression and organismal life span. Cell. 2009; 136(1):62-74. DOI 10.1016/j.cell.2008.10.052; Kim S., Bi X., Czarny-Ratajczak M., Dai J., Welsh D.A., Myers L., Welsch M.A., Cherry K.E., Arnold J., Poon L.W., Jazwinski S.M. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology. 2012;13(2):119-131. DOI 10.1007/s10522-011-9360-5; Kiran S., Chatterjee N., Singh S., Kaul S.C., Wadhwa R., Ramakrishna G. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. 2013;280(14):3451-3466. DOI 10.1111/febs.12346; Kumar R., Mohan N., Upadhyay A.D., Singh A.P., Sahu V., Dwivedi S., Dey A.B., Dey S. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975-980. DOI 10.1111/acel.12260; Laurent G., German N.J., Saha A.K., de Boer V.C.J., Davies M., Koves T.R., Dephoure N., Fischer F., Boanca G., Vaitheesvaran B., Lovitch S.B., Sharpe A.H., Kurland I.J., Steegborn C., Gygi S.P., Muoio D.M., Ruderman N.B., Haigis M.C. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell. 2013;50(5):686-698. DOI 10.1016/j.molcel.2013.05.012; Lee N., Kim D.-K., Kim E.-S., Park S.J., Kwon J.-H., Shin J., Park S.- M., Moon Y.H., Wang H.J., Gho Y.S., Choi K.Y. Comparative interactomes of SIRT6 and SIRT7: Implication of functional links to aging. Proteomics. 2014;14(13-14):1610-1622. DOI 10.1002/pmic.201400001; Leng S., Huang W., Chen Y., Yang Ya., Feng D., Liu W., Gao T., Ren Y., Huo M., Zhang J., Yang Yu., Wang Y. SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis. Cell Death Differ. 2021;28(12):3329-3343. DOI 10.1038/s41418-021-00821-z; Li T., Garcia-Gomez A., Morante-Palacios O., Ciudad L., Özkara mehmet S., Van Dijck E., Rodríguez-Ubreva J., Vaquero A., Balles tar E. SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages. Nucleic Acids Res. 2020;48(2): 665-681. DOI 10.1093/nar/gkz1127; Li Z., Li H., Zhao Z.-B., Zhu W., Feng P.-P., Zhu X.-W., Gong J.-P. SIRT4 silencing in tumor-associated macrophages promotes HCC development via PPARδ signalling-mediated alternative activation of macrophages. J. Exp. Clin. Cancer Res. 2019;38(1):469. DOI 10.1186/s13046-019-1456-9; Lin R., Yan D., Zhang Y., Liao X., Gong G., Hu J., Fu Y., Cai W. Common variants in SIRT1 and human longevity in a Chinese population. BMC Med. Genet. 2016a;17(1):31. DOI 10.1186/s12881-016-0293-3; Lin R., Zhang Y., Yan D., Liao X., Gong G., Hu J., Fu Y., Cai W. Lack of association between polymorphisms in the SIRT6 gene and longevity in a Chinese population. Mol. Cell. Probes. 2016b;30(2): 79-82. DOI 10.1016/j.mcp.2016.01.005; Liu Z.-H., Zhang Ya., Wang X., Fan X.-F., Zhang Yu., Li X., Gong Y.- Sh., Han L.-P. SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition. Biomed. Pharmacother. 2019;118:109227. DOI 10.1016/j.biopha.2019.109227; LoBianco F.V., Krager K.J., Carter G.S., Alam S., Yuan Y., Lavoie E.G., Dranoff J.A., Aykin-Burns N. The role of Sirtuin 3 in radiationinduced long-term persistent liver injury. Antioxidants. 2020;9(5): 409. DOI 10.3390/antiox9050409; Lombard D.B., Alt F.W., Cheng H.-L., Bunkenborg J., Streeper R.S., Mostoslavsky R., Kim J., Yancopoulos G., Valenzuela D., Murphy A., Yang Y., Chen Y., Hirschey M.D., Bronson R.T., Haigis M., Guarente L.P., Farese R.V., Weissman S., Verdin E., Schwer B. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007;27(24):8807-8814. DOI 10.1128/MCB.01636-07; Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A., Guarente L., Gu W. Negative control of p53 by Sir2α promotes cell survival under stress. Cell. 2001;107(2):137-148. DOI 10.1016/S0092-8674(01)00524-4; Maity S., Muhamed J., Sarikhani M., Kumar S., Ahamed F., Spurthi K.M., Ravi V., Jain A., Khan D., Arathi B.P., Desingu P.A., Sundaresan N.R. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J. Biol. Chem. 2020; 295(2): 415-434. DOI 10.1074/jbc.RA118.007212; Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332(6036):1443-1446. DOI 10.1126/science.1202723; Mathias R.A., Greco T.M., Oberstein A., Budayeva H.G., Chakrabarti R., Rowland E.A., Kang Y., Shenk T., Cristea I.M. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell. 2014;159(7):1615-1625. DOI 10.1016/j.cell.2014.11.046; Michishita E., Park J.Y., Burneskis J.M., Barrett J.C., Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 2005;16(10): 4623-4635. DOI 10.1091/mbc.e05-01-0033; Michishita E., McCord R.A., Berber E., Kioi M., Padilla-Nash H., Damian M., Cheung P., Kusumoto R., Kawahara T.L.A., Barrett J.C., Chang H.Y., Bohr V.A., Ried T., Gozani O., Chua K.F. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452(7186):492-496. DOI 10.1038/nature06736; Mizumoto T., Yoshizawa T., Sato Y., Ito T., Tsuyama T., Satoh A., Araki S., Tsujita K., Tamura M., Oike Y., Yamagata K. SIRT7 deficiency protects against aging-associated glucose intolerance and extends lifespan in male mice. Cells. 2022;11(22):3609. DOI 10.3390/cells11223609; Moniot S., Schutkowski M., Steegborn C. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J. Struct. Biol. 2013; 182(2):136-143. DOI 10.1016/j.jsb.2013.02.012; North B.J., Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One. 2007;2(8):e784. DOI 10.1371/journal.pone.0000784; North B.J., Marshall B.L., Borra M.T., Denu J.M., Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell. 2003;11(2):437-444. DOI 10.1016/S1097-2765(03)00038-8; Ong A.L.C., Ramasamy T.S. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res. Rev. 2018; 43:64-80. DOI 10.1016/j.arr.2018.02.004; Palomer X., Román-Azcona M.S., Pizarro-Delgado J., Planavila A., Villarroya F., Valenzuela-Alcaraz B., Crispi F., Sepúlveda-Martínez Á., Miguel-Escalada I., Ferrer J., Nistal J.F., García R., Davidson M.M., Barroso E., Vázquez-Carrera M. SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation. Signal Transduct. Target. Ther. 2020;5(1):14. DOI 10.1038/s41392-020-0114-1; Paredes S., Angulo-Ibanez M., Tasselli L., Carlson S.M., Zheng W., Li T.-M., Chua K.F. The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J. Biol. Chem. 2018;293(28):11242-11250. DOI 10.1074/jbc.AC118.003325; Peng L., Yuan Z., Ling H., Fukasawa K., Robertson K., Olashaw N., Koomen J., Chen J., Lane W.S., Seto E. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol. Cell. Biol. 2011;31(23):4720-4734. DOI 10.1128/MCB.06147-11; Pereira J.M., Chevalier C., Chaze T., Gianetto Q., Impens F., Matondo M., Cossart P., Hamon M.A. Infection reveals a modification of SIRT2 critical for chromatin association. Cell Rep. 2018;23(4): 1124-1137. DOI 10.1016/j.celrep.2018.03.116; Piracha Z.Z., Saeed U., Kim J., Kwon H., Chwae Y.-J., Lee H.W., Lim J.H., Park S., Shin H.-J., Kim K. An alternatively spliced Sirtuin 2 isoform 5 inhibits Hepatitis B virus replication from cccDNA by repressing epigenetic modifications made by histone lysine methyltransferases. J. Virol. 2020;94(16):e00926-20. DOI 10.1128/JVI.00926-20; Pruitt K.D., Harrow J., Harte R.A., Wallin C., Diekhans M., Maglott D.R., Searle S., … Wu W., Birney E., Haussler D., Hubbard T., Ostell J., Durbin R., Lipman D. The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res. 2009;19(7):13161323. DOI 10.1101/gr.080531.108; Pukhalskaia A.E., Dyatlova A.S., Linkova N.S., Kozlov K.L., Kvetnaia T.V., Koroleva M.V., Kvetnoy I.M. Sirtuins as possible predictors of aging and Alzheimer’s disease development: verification in the hippocampus and saliva. Bull. Exp. Biol. Med. 2020;169(6):821824. DOI 10.1007/s10517-020-04986-4; Pukhalskaia A.E., Kvetnoy I.M., Linkova N.S., Diatlova A.S., Gutop E.O., Kozlov K.L., Paltsev M.A. Sirtuins and aging. Uspekhi Fizio logicheskikh Nauk = Progress in Physiological Science. 2022; 53(1):16-27. DOI 10.31857/S0301179821040056 (in Russian); Quan Y., Park W., Jin J., Kim W., Park S.K., Kang K.P. Sirtuin 3 activation by honokiol decreases unilateral ureteral obstruction-induced renal inflammation and fibrosis via regulation of mitochondrial dynamics and the renal NF-κB-TGF-β1/Smad signaling pathway. Int. J. Mol. Sci. 2020;21(2):402. DOI 10.3390/ijms21020402; Rack J.G.M., VanLinden M.R., Lutter T., Aasland R., Ziegler M. Constitutive nuclear localization of an alternatively spliced Sirtuin-2 isoform. J. Mol. Biol. 2014;426(8):1677-1691. DOI 10.1016/j.jmb. 2013.10.027; Rajamohan S.B., Pillai V.B., Gupta M., Sundaresan N.R., Birukov K.G., Samant S., Hottiger M.O., Gupta M.P. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADPribose) polymerase 1. Mol. Cell. Biol. 2009;29(15):4116-4129. DOI 10.1128/MCB.00121-09; Ramadani-Muja J., Gottschalk B., Pfeil K., Burgstaller S., Rauter T., Bischof H., Waldeck-Weiermair M., Bugger H., Graier W.F., Malli R. Visualization of Sirtuin 4 distribution between mitochondria and the nucleus, based on bimolecular fluorescence self-complementation. Cells. 2019;8(12):1583. DOI 10.3390/cells8121583; Ren Y., Du C., Yan L., Wei J., Wu H., Shi Y., Duan H. CTGF siRNA ameliorates tubular cell apoptosis and tubulointerstitial fibrosis in obstructed mouse kidneys in a Sirt1-independent manner. Drug Des. Devel. Ther. 2015;9:4155-4171. DOI 10.2147/DDDT.S86748; Rogina B., Helfand S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA. 2004;101(45):15998-16003. DOI 10.1073/pnas.040418410; Roichman A., Elhanati S., Aon M.A., Abramovich I., Di Francesco A., Shahar Y., Avivi M.Y., Shurgi M., Rubinstein A., Wiesner Y., Shuchami A., Petrover Z., Lebenthal-Loinger I., Yaron O., Lyashkov A., Ubaida-Mohien C., Kanfi Y., Lerrer B., Fernández-Marcos P.J., Serrano M., Gottlieb E., de Cabo R., Cohen H.Y. Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat. Commun. 2021;12(1):3208. DOI 10.1038/s41467-021-23545-7; Rothgiesser K.M., Erener S., Waibel S., Lüscher B., Hottiger M.O. SIRT2 regulates NF-κB-dependent gene expression through deacetylation of p65 Lys310. J. Cell Sci. 2010;123(24):4251-4258. DOI 10.1242/jcs.073783; Satoh A., Brace C.S., Rensing N., Cliften P., Wozniak D.F., Herzog E.D., Yamada K.A., Imai S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18(3):416-430. DOI 10.1016/j.cmet.2013.07.013; Sauve A.A., Wolberger C., Schramm V.L., Boeke J.D. The biochemistry of sirtuins. Annu. Rev. Biochem. 2006;75:435-465. DOI 10.1146/annurev.biochem.74.082803.133500; Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Connor R., Funk K., Kelly C., Kim S., Madej T., Marchler-Bauer A., Lanczycki C., Lathrop S., Lu Z., Thibaud-Nissen F., Murphy T., Phan L., Skripchenko Y., Tse T., Wang J., Williams R., Trawick B.W., Pruitt K.D., Sherry S.T. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20-D26. DOI 10.1093/nar/gkab1112; Schmeisser K., Mansfeld J., Kuhlow D., Weimer S., Priebe S., Heiland I., Birringer M., Groth M., Segref A., Kanfi Y., Price N.L., Schmeisser S., Schuster S., Pfeiffer A.F.H., Guthke R., Platzer M., Hoppe T., Cohen H.Y., Zarse K., Sinclair D.A., Ristow M. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat. Chem. Biol. 2013;9(11):693-700. DOI 10.1038/nchembio.1352; Sengupta A., Haldar D. Human sirtuin 3 (SIRT3) deacetylates histone H3 lysine 56 to promote nonhomologous end joining repair. DNA Repair (Amst.). 2018;61:1-16. DOI 10.1016/j.dnarep.2017.11.003; Simon M., Yang J., Gigas J., Earley E.J., Hillpot E., Zhang L., Zagorulya M., Tombline G., Gilbert M., Yuen S.L., Pope A., Van Meter M., Emmrich S., Firsanov D., Athreya A., Biashad S.A., Han J., Ryu S., Tare A., Zhu Y., Hudgins A., Atzmon G., Barzilai N., Wolfe A., Moody K., Garcia B.A., Thomas D.D., Robbins P.D., Vijg J., Seluanov A., Suh Y., Gorbunova V. A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. EMBO J. 2022;41(21):e110393. DOI 10.15252/embj.2021110393; Simonet N.G., Thackray J.K., Vazquez B.N., Ianni A., EspinosaAlcantud M., Morales-Sanfrutos J., Hurtado-Bagès S., Sabidó E., Buschbeck M., Tischfield J., De La Torre C., Esteller M., Braun T., Olivella M., Serrano L., Vaquero A. SirT7 auto-ADP-ribosylation regulates glucose starvation response through mH2A1. Sci. Adv. 2020;6(30):eaaz2590. DOI 10.1126/sciadv.aaz2590; Sinclair D.A., Guarente L. Extrachromosomal rDNA circles – a cause of aging in yeast. Cell. 1997;91(7):1033-1042. DOI 10.1016/S0092-8674(00)80493-6; Smith J.S., Brachmann C.B., Celic I., Kenna M.A., Muhammad S., Starai V.J., Avalos J.L., Escalante-Semerena J.C., Grubmeyer C., Wolberger C., Boeke J.D. A phylogenetically conserved NAD+dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. USA. 2000;97(12):6658-6663. DOI 10.1073/pnas.97.12.6658; Soerensen M., Dato S., Tan Q., Thinggaard M., Kleindorp R., Beekman M., Suchiman H.E.D., Jacobsen R., McGue M., Stevnsner T., Bohr V.A., de Craen A.J.M., Westendorp R.G.J., Schreiber S., Slagboom P.E., Nebel A., Vaupel J.W., Christensen K., Christiansen L. Evidence from case-control and longitudinal studies supports associations of genetic variation in APOE, CETP, and IL6 with human longevity. Age (Dordr.). 2013;35(2):487-500. DOI 10.1007/s11357-011-9373-7; Song C., Hotz-Wagenblatt A., Voit R., Grummt I. SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes Dev. 2017;31(13):13701381. DOI 10.1101/gad.300624.117; Subramani P., Nagarajan N., Mariaraj S., Vilwanathan R. Knockdown of sirtuin6 positively regulates acetylation of DNMT1 to inhibit NOTCH signaling pathway in non-small cell lung cancer cell lines. Cell. Signal. 2023;105:110629. DOI 10.1016/j.cellsig.2023.110629; Sun L., Fang J. Macromolecular crowding effect is critical for maintaining SIRT1’s nuclear localization in cancer cells. Cell Cycle. 2016;15(19):2647-2655. DOI 10.1080/15384101.2016.1211214; Sundaresan N.R., Bindu S., Pillai V.B., Samant S., Pan Y., Huang J.-Y., Gupta M., Nagalingam R.S., Wolfgeher D., Verdin E., Gupta M.P. SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β. Mol. Cell. Biol. 2016;36(5):678-692. DOI 10.1128/MCB.00586-15; Tan M., Peng C., Anderson K.A., Chhoy P., Xie Z., Dai L., Park J., Chen Y., Huang H., Zhang Y., Ro J., Wagner G.R., Green M.F., Madsen A.S., Schmiesing J., Peterson B.S., Xu G., Ilkayeva O.R., Muehlbauer M.J., Braulke T., Mühlhausen C., Backos D.S., Olsen C.A., McGuire P.J., Pletcher S.D., Lombard D.B., Hirschey M.D., Zhao Y. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014;19(4):605-617. DOI 10.1016/ j.cmet.2014.03.014; Taylor J.R., Wood J.G., Mizerak E., Hinthorn S., Liu J., Finn M., Gordon S., Zingas L., Chang C., Klein M.A., Denu J.M., Gorbunova V., Seluanov A., Boeke J.D., Sedivy J.M., Helfand S.L. Sirt6 regulates lifespan in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 2022;119(5):e2111176119. DOI 10.1073/pnas.2111176119; TenNapel M.J., Lynch C.F., Burns T.L., Wallace R., Smith B.J., Button A., Domann F.E. SIRT6 minor allele genotype is associated with >5-year decrease in lifespan in an aged cohort. PLoS One. 2014;9(12):e115616. DOI 10.1371/journal.pone.0115616; Tian X., Firsanov D., Zhang Z., Cheng Y., Luo L., Tombline G., Tan R., Simon M., Henderson S., Steffan J., Goldfarb A., Tam J., Zheng K., Cornwell A., Johnson A., Yang J.-N., Mao Z., Manta B., Dang W., Zhang Z., Vijg J., Wolfe A., Moody K., Kennedy B.K., Bohmann D., Gladyshev V.N., Seluanov A., Gorbunova V. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell. 2019;177(3):622-638.e22. DOI 10.1016/j.cell.2019.03.043; Tissenbaum H.A., Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410(6825):227230. DOI 10.1038/35065638; Tsai Y.-C., Greco T.M., Boonmee A., Miteva Y., Cristea I.M. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol. Cell. Proteomics. 2012;11(5):60-76. DOI 10.1074/mcp.A111.015156; van der Horst A., Tertoolen L.G.J., de Vries-Smits L.M.M., Frye R.A., Medema R.H., Burgering B.M.T. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2SIRT1. J. Biol. Chem. 2004;279(28):28873-28879. DOI 10.1074/jbc.M40 1138200; Van Meter M., Kashyap M., Rezazadeh S., Geneva A.J., Morello T.D., Seluanov A., Gorbunova V. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 2014;5(1):5011. DOI 10.1038/ncomms6011; Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., Reinberg D. Human sirt1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell. 2004;16(1): 93-105. DOI 10.1016/j.molcel.2004.08.031; Vaquero A., Scher M.B., Lee D.H., Sutton A., Cheng H.-L., Alt F.W., Serrano L., Sternglanz R., Reinberg D. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. ;20(10):1256-1261. DOI 10.1101/gad.1412706; Vaquero A., Scher M., Erdjument-Bromage H., Tempst P., Serrano L., Reinberg D. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007; 450(7168):440-444. DOI 10.1038/nature06268; Vaziri H., Dessain S.K., Eaton E.N., Imai S.-I., Frye R.A., Pandita T.K., Guarente L., Weinberg R.A. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149-159. DOI 10.1016/S0092-8674(01)00527-X; Vazquez B.N., Thackray J.K., Simonet N.G., Kane‐Goldsmith N., Martinez‐Redondo P., Nguyen T., Bunting S., Vaquero A., Tischfield J.A., Serrano L. SIRT7 promotes genome integrity and modulates nonhomologous end joining DNA repair. EMBO J. 2016;35(14):14881503. DOI 10.15252/embj.201593499; Vazquez B.N., Fernández-Duran I., Vaquero A. Sirtuins in hematopoiesis and blood malignancies. Chapter 23. In: Maiese K. (Ed.). Sirtuin Biology in Medicine. Academic Press, 2021;373-391. DOI 10.1016/B978-0-12-814118-2.00020-3; Viswanathan M., Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature. 2011;477(7365):E1-E2. DOI 10.1038/nature10440; Wang L., Xu C., Johansen T., Berger S.L., Dou Z. SIRT1 – a new mammalian substrate of nuclear autophagy. Autophagy. 2021;17(2):593-595. DOI 10.1080/15548627.2020.1860541; Wang R.-H., Sengupta K., Li C., Kim H.-S., Cao L., Xiao C., Kim S., Xu X., Zheng Y., Chilton B., Jia R., Zheng Z.-M., Appella E., Wang X.W., Ried T., Deng C.-X. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14(4):312-323. DOI 10.1016/j.ccr.2008.09.001; Whitaker R., Faulkner S., Miyokawa R., Burhenn L., Henriksen M., Wood J.G., Helfand S.L. Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner. Aging. 2013;5(9): 682-691. DOI 10.18632/aging.100599; Willcox B.J., Donlon T.A., He Q., Chen R., Grove J.S., Yano K., Masaki K.H., Willcox D.C., Rodriguez B., Curb J.D. FOXO3A genotype is strongly associated with human longevity. Proc. Natl. Acad. Sci. USA. 2008;105(37):13987-13992. DOI 10.1073/pnas.0801030105; Woo S.J., Lee S.-M., Lim H.S., Hah Y.-S., Jung I.D., Park Y.-M., Kim H.-O., Cheon Y.-H., Jeon M.-G., Jang K.Y., Kim K.M., Park B.- H., Lee S.-I. Myeloid deletion of SIRT1 suppresses collagen-induced arthritis in mice by modulating dendritic cell maturation. Exp. Mol. Med. 2016;48(3):e221. DOI 10.1038/emm.2015.124; Woo S.J., Noh H.S., Lee N.Y., Cheon Y.-H., Yi S.M., Jeon H.M., Bae E.J., Lee S.-I., Park B.-H. Myeloid sirtuin 6 deficiency accelerates experimental rheumatoid arthritis by enhancing macrophage activation and infiltration into synovium. EBioMedicine. 2018;38: 228-237. DOI 10.1016/j.ebiom.2018.11.005; Wood J.G., Schwer B., Wickremesinghe P.C., Hartnett D.A., Burhenn L., Garcia M., Li M., Verdin E., Helfand S.L. Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 2018;115(7):1564-1569. DOI 10.1073/pnas.1720673115; Wu Q.J., Zhang T.N., Chen H.H., Yu X.F., Lv J.L., Liu Y.Y., Liu Y.S., Zheng G., Zhao J.Q., Wei Y.F., Guo J.Y., Liu F.H., Chang Q., Zhang Y.X., Liu C.G., Zhao Y.H. The sirtuin family in health and disease. Signal Transduct. Target. Ther. 2022;7(1):402. DOI 10.1038/s41392-022-01257-8; Xu C., Wang L., Fozouni P., Evjen G., Chandra V., Jiang J., Lu C., Nicastri M., Bretz C., Winkler J.D., Amaravadi R., Garcia B.A., Adams P.D., Ott M., Tong W., Johansen T., Dou Z., Berger S.L. SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 2020;22(10):1170-1179. DOI 10.1038/s41556-020-00579-5; Yang Y., Hou H., Haller E.M., Nicosia S.V., Bai W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 2005;24(5):1021-1032. DOI 10.1038/sj.emboj.7600570; Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R., Frye R.A., Mayo M.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004; 23(12):2369-2380. DOI 10.1038/sj.emboj.7600244; Zhang J., Fang L., Lu Z., Xiong J., Wu M., Shi L., Luo A., Wang S. Are sirtuins markers of ovarian aging? Gene. 2016;575(2 Pt. 3):680-686. DOI 10.1016/j.gene.2015.09.043; Zhang P.-Y., Li G., Deng Z.-J., Liu L.-Y., Chen L., Tang J.-Z., Wang Y.- Q., Cao S.-T., Fang Y.-X., Wen F., Xu Y., Chen X., Shi K.- Q., Li W.-F., Xie C., Tang K.-F. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res. 2016;44(8):3629-3642. DOI 10.1093/nar/gkv1504; Zhang W.-G., Bai X.-J., Chen X.-M. SIRT1 variants are associated with aging in a healthy Han Chinese population. Clin. Chim. Acta. 2010;411(21-22):1679-1683. DOI 10.1016/j.cca.2010.06.030; Zhang X., Spiegelman N.A., Nelson O.D., Jing H., Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. eLife. 2017;6:e25158. DOI 10.7554/eLife.25158; Zhang X., Ameer F.S., Azhar G., Wei J.Y. Alternative splicing increases sirtuin gene family diversity and modulates their subcellular localization and function. Int. J. Mol. Sci. 2021;22(2):473. DOI 10.3390/ijms22020473; Zhang Y., Connelly K.A., Thai K., Wu X., Kapus A., Kepecs D., Gilbert R.E. Sirtuin 1 activation reduces transforming growth factorβ1-induced fibrogenesis and affords organ protection in a model of progressive, experimental kidney and associated cardiac disease. Am. J. Pathol. 2017;187(1):80-90. DOI 10.1016/j.ajpath.2016.09.016; Zhao Y., Wang H., Poole R.J., Gems D. A fln-2 mutation affects lethal pathology and lifespan in C. elegans. Nat. Commun. 2019;10(1): 5087. DOI 10.1038/s41467-019-13062-z; Zhong L., D’Urso A., Toiber D., Sebastian C., Henry R.E., Vadysirisack D.D., Guimaraes A., Marinelli B., Wikstrom J.D., Nir T., Clish C.B., Vaitheesvaran B., Iliopoulos O., Kurland I., Dor Y., Weissleder R., Shirihai O.S., Ellisen L.W., Espinosa J.M., Mostoslavsky R. The histone deacetylase SIRT6 regulates glucose homeostasis via Hif1α. Cell. 2010;140(2):280-293. DOI 10.1016/j.cell.2009.12.041; https://vavilov.elpub.ru/jour/article/view/4092

  2. 2
    Academic Journal

    Συνεισφορές: The study was carried out according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the Research Centre for Medical Genetics., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ» на 2024 г.

    Πηγή: Medical Genetics; Том 23, № 7 (2024); 15-23 ; Медицинская генетика; Том 23, № 7 (2024); 15-23 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2505/1802; Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. Mercher T and Schwaller J (2019) Front. Pediatr. 7: 401.doi:10.3389/fped.2019.00401; Li S., Mason C.E., Melnick A. Genetic and epigenetic heterogeneity in acute myeloid leukemia. Curr Opin Genet Dev. 2016;36:100106. doi:10.1016/j.gde.2016.03.011; Stratmann S., Yones S.A., Mayrhofer M., et al. Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv. 2021;5(3):900-912. doi:10.1182/bloodadvances.2020003709; Conneely S.E., Rau R.E. The genomics of acute myeloid leukemia in children. Cancer Metastasis Rev. 2020;39(1):189-209. doi:10.1007/s10555-020-09846-1; Aziz H., Ping C.Y., Alias H., Ab Mutalib N.S., Jamal R. Gene Mutations as Emerging Biomarkers and Therapeutic Targets for Relapsed Acute Myeloid Leukemia. Front Pharmacol. 2017;8:897. doi:10.3389/fphar.2017.00897; Klein K., van Litsenburg R.R.L., de Haas V., et al. Causes of early death and treatment-related death in newly diagnosed pediatric acute myeloid leukemia: Recent experiences of the Dutch Childhood Oncology Group. Pediatr Blood Cancer. 2020 Apr;67(4):e28099. doi:10.1002/pbc.28099.; Bachas C. et al. The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia.2012; 26: 1313–1320. (2012).; Farrar J.E., Schuback H.L., Ries R.E., et al. Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse. Cancer Res. 2016;76(8):2197-2205. doi:10.1158/0008-5472.CAN-15-1015; Jones L., McCarthy P., Bond J. Epigenetics of paediatric acute myeloid leukaemia. Br J Haematol. 2020 Jan;188(1):63-76. doi:10.1111/bjh.16361.; Liang D.C., Liu H.C., Yang C.P., et al. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood. 2013;121(15):2988-2995. doi:10.1182/blood-2012-06-436782; Xu H., Wen Y., Jin R., Chen H. Epigenetic modifications and targeted therapy in pediatric acute myeloid leukemia. Front Pediatr. 2022;10:975819. doi:10.3389/fped.2022.975819; Bertuccio S.N., Anselmi L., Masetti R., et al. Exploiting Clonal Evolution to Improve the Diagnosis and Treatment Efficacy Prediction in Pediatric AML. Cancers (Basel). 2021;13(9):1995. doi:10.3390/cancers13091995; Zafar N., Ghias K., Fadoo Z. Genetic aberrations involved in relapse of pediatric acute myeloid leukemia: A literature review. Asia Pac J Clin Oncol. 2021;17(5):e135-e141. doi:10.1111/ajco.13367; Stratmann S., Yones S.A., Mayrhofer M., et al. Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv. 2021 Feb 9;5(3):900-912. doi:10.1182/bloodadvances.2020003709.; Masetti R., Castelli I., Astolfi A., et al. Genomic complexity and dynamics of clonal evolution in childhood acute myeloid leukemia studied with whole-exome sequencing. Oncotarget. 2016;7(35):56746-56757. doi:10.18632/oncotarget.10778; Garg M. et al. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood. 2015; 126: 2491–2501.; Bolouri H., Farrar J.E., Triche T.J., et al. Comprehensive characterization of pediatric acute myeloid leukemia reveals novel molecular features and age-specific interactions. bioRxiv. 2017. https://doi.org/10.1101/125609; Pollard J.A., Alonzo T.A., Gerbing R., et al. Sorafenib in Combination With Standard Chemotherapy for Children With High Allelic Ratio FLT3/ITD+ Acute Myeloid Leukemia: A Report From the Children’s Oncology Group Protocol AAML1031. J Clin Oncol. 2022 Jun 20;40(18):2023-2035. doi:10.1200/JCO.21.01612.; Ding L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012; 481: 506–510.; Tarlock K., Meshinchi S. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am. 2015;62(1):75–93.; Bachas C., Schuurhuis G.J., Hollink I.H.I.M., et al. High-frequency type I/II mutational shifts between diagnosis and relapse are associated with outcome in pediatric AML: implications for personalized medicine. Blood. 2010; 116: 2752-2758.; Smith C.C., Levis M.J., Perl A.E., Hill J.E, Rosales M., Bahceci E. Molecular profile of FLT3-mutated relapsed/refractory patients with AML in the phase 3 ADMIRAL study of gilteritinib. Blood Adv. 2022 Apr 12;6(7):2144-2155. doi:10.1182/bloodadvances.2021006489.; Sun Y., Chen B.R., Deshpande A. Epigenetic Regulators in the Development, Maintenance, and Therapeutic Targeting of Acute Myeloid Leukemia. Front Oncol. 2018 Feb 23;8:41. doi:10.3389/fonc.2018.00041.; Dawson M.A., Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012; 150:12–27. doi:10.1016/j.cell.2012.06.013; Guryanova O.A., Shank K., Spitzer B., et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016 Dec;22(12):14881495. doi:10.1038/nm.4210.; Montalban-Bravo G., DiNardo C.D. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018; 14:979–93. doi:10.2217/fon-2017-0523; Shlush L.I., Zandi S., Mitchell A., et al. Identification of preleukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014; 506(7488): 328-333. doi:10.1038/nature13038 63.; Corces-Zimmerman M.R., Hong W.J., Weissman I.L., Medeiros B.C., Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014; 111(7): 2548-2553. doi:10.1073/pnas.1324297111; Wiehle L., Raddatz G., Pusch S., et al. mIDH-associated DNA hypermethylation in acute myeloid leukemia reflects differentiation blockage rather than inhibition of TET-mediated demethylation. Cell Stress. 2017 Sep 20;1(1):55-67. doi:10.15698/cst2017.10.106.; Ley T.J., Miller C., Ding L., et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368:2059–74. doi:10.1056/NEJMoa1301689; Fong C.Y., Morison J., Dawson M.A. Epigenetics in the hematologic malignancies. Haematologica. 2014; 99:1772–83. doi:10.3324/haematol.2013. 092007; Nguyen S., Leblanc T., Fenaux P., et al. A white blood cell index 341 as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 342 cases from the French AML Intergroup. Blood. 2002; 99: 3517–23; Zampini M., Tregnago C., Bisio, V. et al. Epigenetic heterogeneity affects the risk of relapse in children with t(8;21) RUNX1-RUNX1T1-rearranged AML. Leukemia. 2018; 32: 1124–1134. https://doi.org/10.1038/s41375-017-0003-y; Ichikawa M., Yoshimi A., Nakagawa M., et al. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int. J. Hematol. 2013; 97: 726–734.; Sardina J.L., Collombet S., Tian T.V., et al. Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem. Cell. 2018; 23: 905–906.; Romanova E.I., Zubritskiy A.V., Lioznova A.V., et al. RUNX1/CEBPA Mutation in Acute Myeloid Leukemia Promotes Hypermethylation and Indicates for Demethylation Therapy. Int J Mol Sci. 2022 Sep 27;23(19):11413. doi:10.3390/ijms231911413.; Alexander T.B., Mullighan C.G. Molecular Biology of Childhood Leukemia. Annual Review of Cancer Biology. 2021; 5(1), 95-117.; An J., Ko M. Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci. 2023 Jan 15;24(2):1727. doi:10.3390/ijms24021727.; Bhojwani D., Burke M.J., Horton T., et al. Investigating the biology of relapsed acute leukemia: Proceedings of the Therapeutic Advances for Childhood Leukemia & Lymphoma (TACL) Consortium Biology Working Group. Pediatr Hematol Oncol. 2017 SepOct;34(6-7):355-364. doi:10.1080/08880018.2017.1395937.; Shlush L., Mitchell A., Heisler L. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017; 547: 104– 108. https://doi.org/10.1038/nature22993; Stieglitz E., Mazor T., Olshen A.B. et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat Commun. 2017; 8,:2127. https://doi.org/10.1038/s41467017-02178-9; Olk-Batz C., Poetsch A.R., Nöllke P., et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood. 2011 May 5;117(18):4871-80. doi:10.1182/blood-2010-08-298968.; Махачева Ф.А., Валиев Т.Т. Лечение острых миелоидных лейкозов у детей: современный взгляд на проблему. Онкогематология. 2020;15(1):10-27. https://doi.org/10.17650/1818-8346-2020-15-1-10-27; Махачева Ф.А., Валиев Т.Т. Лечение рецидивов и рефрактерных форм острого миелоидного лейкоза у детей. Онкогематология. 2023;18(2):17-24. https://doi.org/10.17650/1818-8346-2023-18-2-17-24; Al-Rawashde F.A., Johan M.F., Taib W.R.W., et al. Thymoquinone Inhibits Growth of Acute Myeloid Leukemia Cells through Reversal SHP-1 and SOCS-3 Hypermethylation: In Vitro and In Silico Evaluation. Pharmaceuticals (Basel). 2021 Dec 9;14(12):1287. doi:10.3390/ph14121287.; Xiao X., Yang J., Li R., et al. Deregulation of mitochondrial ATPsyn-β in acute myeloid leukemia cells and with increased drug resistance. PLoS One. 2013 Dec 31;8(12):e83610. doi:10.1371/journal.pone.0083610.; Reinhardt D., Antoniou E., Waack K. Pediatric Acute Myeloid Leukemia-Past, Present, and Future. J Clin Med. 2022 Jan 19;11(3):504. doi:10.3390/jcm11030504.

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    Συνεισφορές: The work was carried out with the financial support of the Russian Science Foundation (project No. 21-75-10163)., Работа выполнена при финансовой поддержке Российского научного фонда (проект № 21-75-10163).

    Πηγή: Advances in Molecular Oncology; Vol 9, No 4 (2022); 24‑40 ; Успехи молекулярной онкологии; Vol 9, No 4 (2022); 24‑40 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  5. 5
  6. 6
    Academic Journal

    Συνεισφορές: Russian Science Foundation, grant 17-15-01526, Российский научный фонд, грант 17-15-01526

    Πηγή: Advances in Molecular Oncology; Vol 5, No 4 (2018); 41-63 ; Успехи молекулярной онкологии; Vol 5, No 4 (2018); 41-63 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    Πηγή: Биотехнология в растениеводстве, животноводстве и сельскохозяйственной микробиологии. :72-72

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

    Περιγραφή αρχείου: application/pdf

    Relation: vtls:000470210; URN:ISBN:9785769212277; http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000470210

  19. 19
  20. 20